Geometric weighted least squares estimation

  • Optimal efficiency of least squares (LS) estimation requires that the error variables (residuals) have equal variance (homoscedasticity). In LS applications with multiple output variables, heteroscedasticity can even cause bias. In weighted LS, weights are chosen to compensate for differences in variance. The selection of these weights can be challenging, depending on the specific application. This paper introduces a general method, Geometric Weighted Least Squares (GWLS) estimation, which estimates weights using the inequality between the geometric and arithmetic means. A simulation study explores the performance of the method.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Reinhard OldenburgORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1181359
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/118135
URL:http://www.iapress.org/index.php/soic/article/view/2324
ISSN:2310-5070OPAC
Parent Title (English):Optimization & Information Computing
Publisher:International Academic Press
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/01/20
Volume:13
Issue:2
First Page:611
Last Page:615
DOI:https://doi.org/10.19139/soic-2310-5070-2324
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Didaktik der Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 3.0: Creative Commons - Namensnennung (mit Print on Demand)