Automatic segmentation of histopathological glioblastoma whole-slide images utilizing MONAI

  • Manual segmentation of histopathological images is both resource-intensive and prone to human error, particularly when dealing with challenging tumor types like Glioblastoma (GBM), an aggressive and highly heterogeneous brain tumor. The fuzzy borders of GBM make it especially difficult to segment, requiring models with strong generalization capabilities to achieve reliable results. In this study, we leverage the Medical Open Network for Artificial Intelligence (MONAI) framework to segment GBM tissue from hematoxylin and eosin-stained Whole-Slide Images. MONAI performed comparably well to state-of-the-art AutoML tools on our in-house dataset, achieving a Dice score of 79%. These promising results highlight the potential for future research on public datasets.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ellena Spiess, Dominik MüllerORCiDGND, Moritz DinserORCiD, Volker Herbort, Friederike Liesche-StarneckerORCiDGND, Johannes Schobel, Daniel HieberORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1223946
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122394
ISBN:9781643685960OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):Intelligent health systems – from technology to data and knowledge: proceedings of MIE 2025
Publisher:IOS Press
Place of publication:Amsterdam
Editor:Elisavet Andrikopoulou, Parisis Gallos, Theodoros N. Arvanitis, Rosalynn Austin, Arriel Benis, Ronald Cornet, Panagiotis Chatzistergos, Alexander Dejaco, Linda Dusseljee-Peute, Alaa Mohasseb, Pantelis Natsiavas, Haythem Nakkas, Philip Scott
Type:Conference Proceeding
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/05/30
First Page:88
Last Page:92
Series:Studies in Health Technology and Informatics ; 327
DOI:https://doi.org/10.3233/shti250279
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Medizinische Fakultät
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für IT-Infrastrukturen für die Translationale Medizinische Forschung
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Allgemeine und Spezielle Pathologie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)