A dataset of synthetic art dialogues with ChatGPT

  • This paper introduces Art_GenEvalGPT, a novel dataset of synthetic dialogues centered on art generated through ChatGPT. Unlike existing datasets focused on conventional art-related tasks, Art_GenEvalGPT delves into nuanced conversations about art, encompassing a wide variety of artworks, artists, and genres, and incorporating emotional interventions, integrating speakers’ subjective opinions and different roles for the conversational agents (e.g., teacher-student, expert guide, anthropic behavior or handling toxic users). Generation and evaluation stages of GenEvalGPT platform are used to create the dataset, which includes 13,870 synthetic dialogues, covering 799 distinct artworks, 378 different artists, and 26 art styles. Automatic and manual assessment proof the high quality of the synthetic dialogues generated. For the profile recovery, promising lexical and semantic metrics for objective and factual attributes are offered. For subjective attributes, the evaluation for detectingThis paper introduces Art_GenEvalGPT, a novel dataset of synthetic dialogues centered on art generated through ChatGPT. Unlike existing datasets focused on conventional art-related tasks, Art_GenEvalGPT delves into nuanced conversations about art, encompassing a wide variety of artworks, artists, and genres, and incorporating emotional interventions, integrating speakers’ subjective opinions and different roles for the conversational agents (e.g., teacher-student, expert guide, anthropic behavior or handling toxic users). Generation and evaluation stages of GenEvalGPT platform are used to create the dataset, which includes 13,870 synthetic dialogues, covering 799 distinct artworks, 378 different artists, and 26 art styles. Automatic and manual assessment proof the high quality of the synthetic dialogues generated. For the profile recovery, promising lexical and semantic metrics for objective and factual attributes are offered. For subjective attributes, the evaluation for detecting emotions or subjectivity in the interventions achieves 92% of accuracy using LLM-self assessment metrics.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Manuel Gil-Martín, Cristina Luna-JiménezORCiDGND, Sergio Esteban-Romero, Marcos Estecha-Garitagoitia, Fernando Fernández-Martínez, Luis Fernando D'Haro
URN:urn:nbn:de:bvb:384-opus4-1225095
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122509
ISSN:2052-4463OPAC
Parent Title (English):Scientific Data
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/06/02
Volume:11
Issue:1
First Page:825
DOI:https://doi.org/10.1038/s41597-024-03661-x
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)