Unveiling atmospheric transport and mixing mechanisms of ice-nucleating particles over the Alps

  • Precipitation over the mid-latitudes originates mostly from the ice phase within mixed-phase clouds, signifying the importance of initial ice crystal formation. Primary ice crystals are formed on ice-nucleating particles (INPs), which measurements suggest are sparsely populated in the troposphere. INPs are emitted by a large number of ground-based sources into the atmosphere, from where they can be lifted up to cloud heights. Therefore, it is vital to understand vertical INP transport mechanisms, which are particularly complex over orographic terrain. We investigate the vertical transport and mixing mechanisms of INPs over orographic terrain during cloudy conditions by simultaneous measurements of in situ INP concentration at a high valley and a mountaintop site in the Swiss Alps in late winter 2019. On the mountaintop, the INP concentrations were, on average, lower than in the high valley. However, a diurnal cycle in INP concentrations was observed at the mountaintop, which was absentPrecipitation over the mid-latitudes originates mostly from the ice phase within mixed-phase clouds, signifying the importance of initial ice crystal formation. Primary ice crystals are formed on ice-nucleating particles (INPs), which measurements suggest are sparsely populated in the troposphere. INPs are emitted by a large number of ground-based sources into the atmosphere, from where they can be lifted up to cloud heights. Therefore, it is vital to understand vertical INP transport mechanisms, which are particularly complex over orographic terrain. We investigate the vertical transport and mixing mechanisms of INPs over orographic terrain during cloudy conditions by simultaneous measurements of in situ INP concentration at a high valley and a mountaintop site in the Swiss Alps in late winter 2019. On the mountaintop, the INP concentrations were, on average, lower than in the high valley. However, a diurnal cycle in INP concentrations was observed at the mountaintop, which was absent in the high valley. The median mountaintop INP concentration equilibrated to the concentration found in the high valley towards the night. We found that, in nearly 70 % of the observed cases, INP-rich air masses were orographically lifted from low elevation upstream of the measurement site. In addition, we present evidence that, over the course of the day, air masses containing high INP concentrations were advected from the Swiss plateau towards the measurement sites, contributing to the diurnal cycle of INPs. Our results suggest a local INP concentration enhancement over the Alps during cloud events.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jörg Wieder, Claudia MignaniORCiDGND, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, Zamin A. Kanji
URN:urn:nbn:de:bvb:384-opus4-1233165
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/123316
ISSN:1680-7324OPAC
Parent Title (English):Atmospheric Chemistry and Physics
Publisher:Copernicus
Place of publication:Göttingen
Type:Article
Language:English
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2025/07/04
Volume:22
Issue:5
First Page:3111
Last Page:3130
DOI:https://doi.org/10.5194/acp-22-3111-2022
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Geographie
Fakultät für Angewandte Informatik / Institut für Geographie / Professur für Wasser- und Bodenressourcenforschung
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)