COPA-SG: dense scene graphs with parametric and proto-relations

  • 2D scene graphs provide a structural and explainable framework for scene understanding. However, current work still struggles with the lack of accurate scene graph data. To overcome this data bottleneck, we present CoPa-SG, a synthetic scene graph dataset with highly precise ground truth and exhaustive relation annotations between all objects. Moreover, we introduce parametric and proto-relations, two new fundamental concepts for scene graphs. The former provides a much more fine-grained representation than its traditional counterpart by enriching relations with additional parameters such as angles or distances. The latter encodes hypothetical relations in a scene graph and describes how relations would form if new objects are placed in the scene. Using CoPa-SG, we compare the performance of various scene graph generation models. We demonstrate how our new relation types can be integrated in downstream applications to enhance planning and reasoning capabilities.

Download full text files

  • 126105.pdfeng
    (8197KB)

    Postprint. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Julian LorenzORCiDGND, Mrunmai PhatakGND, Robin SchönORCiDGND, Katja LudwigORCiDGND, Nico Hörmann, Annemarie FriedrichORCiDGND, Rainer LienhartORCiDGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/126105
URL:https://arxiv.org/abs/2506.21357
Parent Title (German):Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, October 19–23th, 2025, Honolulu, Hawai'i
Publisher:IEEE
Place of publication:Piscataway, NJ
Type:Conference Proceeding
Language:English
Date of Publication (online):2025/10/29
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/10/29
First Page:7604
Last Page:7613
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Maschinelles Lernen und Maschinelles Sehen
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Computerlinguistik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)
Licence (German):Deutsches Urheberrecht