Translation inference by concept propagation

  • This paper describes our contribution to the Third Shared Task on Translation Inference across Dictionaries (TIAD-2020). We describe an approach on translation inference based on symbolic methods, the propagation of concepts over a graph of interconnected dictionaries: Given a mapping from source language words to lexical concepts (e.g., synsets) as a seed, we use bilingual dictionaries to extrapolate a mapping of pivot and target language words to these lexical concepts. Translation inference is then performed by looking up the lexical concept(s) of a source language word and returning the target language word(s) for which these lexical concepts have the respective highest score. We present two instantiations of this system: One using WordNet synsets as concepts, and one using lexical entries (translations) as concepts. With a threshold of 0, the latter configuration is the second among participant systems in terms of F1 score. We also describe additional evaluation experiments onThis paper describes our contribution to the Third Shared Task on Translation Inference across Dictionaries (TIAD-2020). We describe an approach on translation inference based on symbolic methods, the propagation of concepts over a graph of interconnected dictionaries: Given a mapping from source language words to lexical concepts (e.g., synsets) as a seed, we use bilingual dictionaries to extrapolate a mapping of pivot and target language words to these lexical concepts. Translation inference is then performed by looking up the lexical concept(s) of a source language word and returning the target language word(s) for which these lexical concepts have the respective highest score. We present two instantiations of this system: One using WordNet synsets as concepts, and one using lexical entries (translations) as concepts. With a threshold of 0, the latter configuration is the second among participant systems in terms of F1 score. We also describe additional evaluation experiments on Apertium data, a comparison with an earlier approach based on embedding projection, and an approach for constrained projection that outperforms the TIAD-2020 vanilla system by a large margin.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Statistik

Anzahl der Zugriffe auf dieses Dokument

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Christian ChiarcosORCiDGND, Niko Schenk, Christian Fäth
URN:urn:nbn:de:bvb:384-opus4-1040264
Frontdoor-URLhttps://opus.bibliothek.uni-augsburg.de/opus4/104026
URL:https://aclanthology.org/2020.globalex-1.16
ISBN:979-10-95546-46-7OPAC
Titel des übergeordneten Werkes (Englisch):Proceedings of the 2020 Globalex Workshop on Linked Lexicography, 11–16 May 2020, Marseille, France
Verlag:European Language Resources Association
Verlagsort:Paris
Herausgeber*in:Ilan Kernerman, Simon Krek, John P. McCrae, Jorge Gracia, Sina Ahmadi, Besim Kabashi
Typ:Konferenzveröffentlichung
Sprache:Englisch
Erstellungsdatum:25.04.2023
Jahr der Erstveröffentlichung:2020
Veröffentlichende Institution:Universität Augsburg
Datum der Freischaltung in OPUS:15.05.2023
Erste Seite:98
Letzte Seite:105
Einrichtungen der Universität:Philologisch-Historische Fakultät
Philologisch-Historische Fakultät / Angewandte Computerlinguistik
Philologisch-Historische Fakultät / Angewandte Computerlinguistik / Lehrstuhl für Angewandte Computerlinguistik (ACoLi)
DDC-Klassifikation:4 Sprache / 40 Sprache / 400 Sprache
Lizenz (Deutsch):License LogoCC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)