Hybrid superconductor-semiconductor systems for quantum technology

  • Superconducting quantum devices provide excellent connectivity and controllability, while semiconductor spin qubits stand out with their long-lasting quantum coherence, fast control, and potential for miniaturization and scaling. In the last few years, remarkable progress has been made in combining superconducting circuits and semiconducting devices into hybrid quantum systems that benefit from the physical properties of both constituents. Superconducting cavities can mediate quantum-coherent coupling over long distances between electronic degrees of freedom such as the spin of individual electrons on a semiconductor chip and, thus, provide essential connectivity for a quantum device. Electron spins in semiconductor quantum dots have reached very long coherence times and allow for fast quantum gate operations with increasing fidelities. We summarize recent progress and theoretical models that describe superconducting–semiconducting hybrid quantum systems, explain the limitations ofSuperconducting quantum devices provide excellent connectivity and controllability, while semiconductor spin qubits stand out with their long-lasting quantum coherence, fast control, and potential for miniaturization and scaling. In the last few years, remarkable progress has been made in combining superconducting circuits and semiconducting devices into hybrid quantum systems that benefit from the physical properties of both constituents. Superconducting cavities can mediate quantum-coherent coupling over long distances between electronic degrees of freedom such as the spin of individual electrons on a semiconductor chip and, thus, provide essential connectivity for a quantum device. Electron spins in semiconductor quantum dots have reached very long coherence times and allow for fast quantum gate operations with increasing fidelities. We summarize recent progress and theoretical models that describe superconducting–semiconducting hybrid quantum systems, explain the limitations of these systems, and describe different directions where future experiments and theory are headed.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Statistik

Anzahl der Zugriffe auf dieses Dokument

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Mónica BenitoORCiDGND, Guido Burkard
URN:urn:nbn:de:bvb:384-opus4-1043059
Frontdoor-URLhttps://opus.bibliothek.uni-augsburg.de/opus4/104305
ISSN:0003-6951OPAC
ISSN:1077-3118OPAC
Titel des übergeordneten Werkes (Englisch):Applied Physics Letters
Verlag:AIP Publishing
Verlagsort:Melville, NY
Typ:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2020
Veröffentlichende Institution:Universität Augsburg
Datum der Freischaltung in OPUS:11.05.2023
Freies Schlagwort / Tag:Physics and Astronomy (miscellaneous)
Jahrgang:116
Ausgabe / Heft:19
Erste Seite:190502
DOI:https://doi.org/10.1063/5.0004777
Einrichtungen der Universität:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Professur für Quantencomputing und Quantengeräte
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Lizenz (Deutsch):License LogoDeutsches Urheberrecht