Combining molecular dynamics simulations and x-ray scattering techniques for the accurate treatment of protonation degree and packing of ionizable lipids in monolayers

  • The pH-dependent change in protonation of ionizable lipids is crucial for the success of lipid-based nanoparticles as mRNA delivery systems. Despite their widespread application in vaccines, the structural changes upon acidification are not well understood. Molecular dynamics simulations support structure prediction but require an a priori knowledge of the lipid packing and protonation degree. The presetting of the protonation degree is a challenging task in the case of ionizable lipids since it depends on pH and on the local lipid environment and often lacks experimental validation. Here, we introduce a methodology of combining all-atom molecular dynamics simulations with experimental total-reflection x-ray fluorescence and scattering measurements for the ionizable lipid Dlin-MC3-DMA (MC3) in POPC monolayers. This joint approach allows us to simultaneously determine the lipid packing and the protonation degree of MC3. The consistent parameterization is expected to be useful forThe pH-dependent change in protonation of ionizable lipids is crucial for the success of lipid-based nanoparticles as mRNA delivery systems. Despite their widespread application in vaccines, the structural changes upon acidification are not well understood. Molecular dynamics simulations support structure prediction but require an a priori knowledge of the lipid packing and protonation degree. The presetting of the protonation degree is a challenging task in the case of ionizable lipids since it depends on pH and on the local lipid environment and often lacks experimental validation. Here, we introduce a methodology of combining all-atom molecular dynamics simulations with experimental total-reflection x-ray fluorescence and scattering measurements for the ionizable lipid Dlin-MC3-DMA (MC3) in POPC monolayers. This joint approach allows us to simultaneously determine the lipid packing and the protonation degree of MC3. The consistent parameterization is expected to be useful for further predictive modeling of the action of MC3-based lipid nanoparticles.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Statistik

Anzahl der Zugriffe auf dieses Dokument

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Miriam Grava, Mohd Ibrahim, Akhil Sudarsan, Julio Pusterla, Julian Philipp, Joachim O. Rädler, Nadine SchwierzORCiDGND, Emanuel Schneck
URN:urn:nbn:de:bvb:384-opus4-1087433
Frontdoor-URLhttps://opus.bibliothek.uni-augsburg.de/opus4/108743
ISSN:0021-9606OPAC
ISSN:1089-7690OPAC
Titel des übergeordneten Werkes (Englisch):The Journal of Chemical Physics
Verlag:AIP Publishing
Verlagsort:Melville, NY
Typ:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Veröffentlichende Institution:Universität Augsburg
Datum der Freischaltung in OPUS:25.10.2023
Freies Schlagwort / Tag:General Physics and Astronomy; Physical and Theoretical Chemistry
Jahrgang:159
Ausgabe / Heft:15
Erste Seite:154706
DOI:https://doi.org/10.1063/5.0172552
Einrichtungen der Universität:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / AG Computergestützte Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Lizenz (Deutsch):License LogoCC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)