Asymptotic Goodness-of-fit Tests for the Palm Mark Distribution of Stationary Point Processes with Correlated Marks

  • We consider spatially homogeneous marked point patterns in an unboundedly expanding convex sampling window. Our main objective is to identify the distribution of the typical mark by constructing an asymptotic chi-square-goodness-of-fit test. The corresponding test statistic is based on a natural empirical version of the Palm mark distribution and a smoothed covariance estimator which turns out to be mean-square consistent. Our approach does not require independent marks and allows dependences between the mark field and the point pattern. Instead we impose a suitable beta-mixing condition on the underlying stationary marked point process which can be checked for a number of Poisson-based models and, in particular, in the case of geostatistical marking. Our method needs a central limit theorem for beta-mixing random fields which is proved by extending Bernstein's blocking technique to non-cubic index sets and seems to be of interest in its own right. By large-scale model-basedWe consider spatially homogeneous marked point patterns in an unboundedly expanding convex sampling window. Our main objective is to identify the distribution of the typical mark by constructing an asymptotic chi-square-goodness-of-fit test. The corresponding test statistic is based on a natural empirical version of the Palm mark distribution and a smoothed covariance estimator which turns out to be mean-square consistent. Our approach does not require independent marks and allows dependences between the mark field and the point pattern. Instead we impose a suitable beta-mixing condition on the underlying stationary marked point process which can be checked for a number of Poisson-based models and, in particular, in the case of geostatistical marking. Our method needs a central limit theorem for beta-mixing random fields which is proved by extending Bernstein's blocking technique to non-cubic index sets and seems to be of interest in its own right. By large-scale model-based simulations the performance of our test is studied in dependence of the model parameters which determine the range of spatial correlations.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Statistik

Anzahl der Zugriffe auf dieses Dokument

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Lothar HeinrichGND, Sebastian Lück, Volker Schmidt
URN:urn:nbn:de:bvb:384-opus4-12082
Frontdoor-URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1499
Schriftenreihe (Bandnummer):Preprints des Instituts für Mathematik der Universität Augsburg (2011-06)
Typ:Preprint
Sprache:Englisch
Erstellungsdatum:21.03.2011
Veröffentlichende Institution:Universität Augsburg
Beteiligte Körperschaft:Institute of Stochastics, Ulm University
Datum der Freischaltung in OPUS:21.03.2011
Freies Schlagwort / Tag:absolute Regularität; faktorielle Momentenmasse; geglaettete Kovarianzschätzung
beta-mixing marked point process; central limit theorem; empirical Palm mark distribution; reduced factorial moment measures
GND-Schlagwort:Markierter Punktprozess; Anpassungstest; Zentraler Grenzwertsatz
Einrichtungen der Universität:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):License LogoDeutsches Urheberrecht mit Print on Demand