Refine
Year of publication
Document Type
- Article (25)
- Part of a Book (1)
Language
- English (26)
Keywords
- Neurology (clinical) (10)
- Neurology (7)
- General Neuroscience (4)
- Cognitive Neuroscience (3)
- Immunology (2)
- Immunology and Allergy (2)
- Aging (1)
- Biophysics (1)
- Cellular and Molecular Neuroscience (1)
- Developmental Neuroscience (1)
Institute
Electroencephalography (EEG) spikes and focal epileptic seizures are generated in circumscribed cerebral networks that have been insufficiently described. For precise time and spatial domain network characterization, we applied in patients with focal epilepsy dense array 256-channel EEG recordings with causal connectivity estimation by using time-resolved partial directed coherence and 3T-magnetic resonance imaging-derived cortical and thalamus integrity reconstruction. Before spike generation, significant theta and alpha bands driven information flows alterations were noted from both temporal and frontal lobes to the thalamus and from the thalamus to the frontal lobe. Medial dorsal and ventral anterior nuclei of the thalamus were delimited as possible pacemakers. Markedly reduced thalamic volumes and impaired cortical integrity in widespread areas predicted the altered information flows. Our data reveal distinct patterns of connectivity involving the thalamus and frontal cortex that are both directly and causally involved in spike generation. These structures might play an essential role in epileptogenesis and could be targeted in future therapeutic approaches.
Objective
The objective of this study was to determine the ability of 7T-MRI for characterizing brain tissue integrity in early relapsing-remitting MS patients compared to conventional 3T-MRI and to investigate whether 7T-MRI improves the performance for detecting cortical gray matter neurodegeneration and its associated network reorganization dynamics.
Methods
Seven early relapsing-remitting MS patients and seven healthy individuals received MRI at 7T and 3T, whereas 30 and 40 healthy controls underwent separate 3T- and 7T-MRI sessions, respectively. Surface-based cortical thickness (CT) and gray-to-white contrast (GWc) measures were used to model morphometric networks, analyzed with graph theory by means of modularity, clustering coefficient, path length, and small-worldness.
Results
7T-MRI had lower CT and higher GWc compared to 3T-MRI in MS. CT and GWc measures robustly differentiated MS from controls at 3T-MRI. 7T- and 3T-MRI showed high regional correspondence for CT (r = 0.72, P = 2e-78) and GWc (r = 0.83, P = 5.5e-121) in MS patients. MS CT and GWc morphometric networks at 7T-MRI showed higher modularity, clustering coefficient, and small-worldness than 3T, also compared to controls.
Interpretation
7T-MRI allows to more precisely quantify morphometric alterations across the cortical mantle and captures more sensitively MS-related network reorganization. Our findings open new avenues to design more accurate studies quantifying brain tissue loss and test treatment effects on tissue repair.
Background: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson’s disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy.
Summary: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients’ clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level.
Key Messages: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.
Purpose
There is growing evidence of extratemporal volume changes associated with pharmacoresistant temporal lobe epilepsy (TLE). The aim of the present study was to characterize the volume changes of thalamus in patients with pharmacoresistant TLE in comparison with healthy controls. Further dependencies of thalamic volumes, seizure focus and duration of epilepsy will be studied.
Method
T1-weighted images (repetition time [TR] = 2,000 ms, echo time [TE] = 9 ms, 4 mm – slice thickness, flip angle = 150°) were acquired by 3T Magnetic Resonance Imaging (MRI) in 15 patients (mean age ± standard deviation [SD] 25 ± 1.8 years, 9 male) with pharmacoresistant TLE (disease duration 15.2 ± 8.8 years). Nine patients (60 %) presented on MRI signs of hippocampal sclerosis (HS). Thalamic volumes were extracted from Freesurfer analytical pipeline and compared with a group of 15 controls (mean age 27.9 ± 4.0 years, 7 male). There was no difference between the groups regarding age (p > 0.1) and sex (p = 0.46). Volumes of thalami were correlated with duration of epilepsy.
Results
Patients with TLE presented significantly smaller thalamic volumes both ipsilateral to the seizure focus (7362.1 ± 848.3 mm3, p = 0.00005) and contralaterally (7,186 ± 848.3 mm3, p = 0.0037) in comparison with healthy controls (right thalamus 8088.7 ± 683 mm3, left thalamus 9360.5 ± 1,382 mm3). We found a negative correlation between the duration of pharmacoresistant TLE and the volume of ipsilateral thalamus (r = - 0.12, p < 0.05) and contralateral thalamus (r = - 0.13, p < 0.05). There was no correlation between age and thalamic volumes both in patients and controls.
Conclusion
Our data show a bilateral thalamic atrophy in patients with pharmacoresistant TLE, that correlates with the disease duration. The present study provides insight into alterations of extrahippocampal morphology induced by recurrent seizures of pharmacoresistant TLE.
L-DOPA is still the most effective pharmacological therapy for the treatment of motor symptoms in Parkinson's disease (PD) almost four decades after it was first used. Deep brain stimulation (DBS) is a safe and highly effective treatment option in patients with PD. Even though a clear understanding of the mechanisms of both treatment methods is yet to be obtained, the combination of both treatments is the most effective standard evidenced-based therapy to date. Recent studies have demonstrated that DBS is a therapy option even in the early course of the disease, when first complications arise despite a rigorous adjustment of the pharmacological treatment. The unique feature of this therapeutic approach is the ability to preferentially modulate specific brain networks through the choice of stimulation site. The clinical effects have been unequivocally confirmed in recent studies; however, the impact of DBS and the supplementary effect of L-DOPA on the neuronal network are not yet fully understood. In this review, we present emerging data on the presumable mechanisms of DBS in patients with PD and discuss the pathophysiological similarities and differences in the effects of DBS in comparison to dopaminergic medication. Targeted, selective modulation of brain networks by DBS and pharmacodynamic effects of L-DOPA therapy on the central nervous system are presented. Moreover, we outline the perioperative algorithms for PD patients before and directly after the implantation of DBS electrodes and strategies for the reduction of side effects and optimization of motor and non-motor symptoms.
Parkinson’s disease (PD) is a neurodegenerative disease, neuropathologically characterized by progressive loss of neurons in distinct brain areas. We hypothesize that quantifiable network alterations are caused by neurodegeneration. The primary motivation of this study was to assess the specific network alterations in PD patients that are distinct but appear in conjunction with physiological aging. 178 subjects (130 females) stratified into PD patients, young, middle-aged and elderly healthy controls (age- and sex-matched with PD patients), were analyzed using 3D-T1 magnetization-prepared rapid gradient-echo (MPRAGE) and diffusion weighted images acquired in 3T MRI scanner. Diffusion modeling and probabilistic tractography analysis were applied for generating voxel-based connectivity index maps from each seed voxel. The obtained connectivity matrices were analyzed using graph theoretical tools for characterization of involved network. By network-based statistic (NBS) the interregional connectivity differences between the groups were assessed. Measures evaluating local diffusion properties for anisotropy and diffusivity were computed for characterization of white matter microstructural integrity. The graph theoretical analysis showed a significant decrease in distance measures – eccentricity and characteristic path length – in PD patients in comparison to healthy subjects. Both measures as well were lower in PD patients when compared to young and middle-aged healthy controls. NBS analysis demonstrated lowered structural connectivity in PD patients in comparison to young and middle-aged healthy subject groups, mainly in frontal, cingulate, olfactory, insula, thalamus, and parietal regions. These specific network differences were distinct for PD and were not observed between the healthy subject groups. Microstructural analysis revealed diffusivity alterations within the white matter tracts in PD patients, predominantly in the body, splenium and tapetum of corpus callosum, corticospinal tract, and corona radiata, which were absent in normal aging. The identified alterations of network connectivity presumably caused by neurodegeneration indicate the disruption in global network integration in PD patients. The microstructural changes identified within the white matter could endorse network reconfiguration. This study provides a clear distinction between the network changes occurring during aging and PD. This will facilitate a better understanding of PD pathophysiology and the direct link between white matter changes and their role in the restructured network topology.
Background
Efficient personalized therapy paradigms are needed to modify the disease course and halt gray (GM) and white matter (WM) damage in patients with multiple sclerosis (MS). Presently, promising disease-modifying drugs show impressive efficiency, however, tailored markers of therapy responses are required. Here, we aimed to detect in a real-world setting patients with a more favorable brain network response and immune cell dynamics upon dimethyl fumarate (DMF) treatment.
Methods
In a cohort of 78 MS patients we identified two thoroughly matched groups, based on age, disease duration, disability status and lesion volume, receiving DMF (n = 42) and NAT (n = 36) and followed them over 16 months. The rate of cortical atrophy and deep GM volumes were quantified. GM and WM network responses were characterized by brain modularization as a marker of regional and global structural alterations. In the DMF group, lymphocyte subsets were analyzed by flow cytometry and related to clinical and MRI parameters.
Results
Sixty percent (25 patients) of the DMF and 36% (13 patients) of the NAT group had disease activity during the study period. The rate of cortical atrophy was higher in the DMF group (−2.4%) compared to NAT (−2.1%, p < 0.05) group. GM and WM network dynamics presented increased modularization in both groups. When dividing the DMF-treated cohort into patients free of disease activity (n = 17, DMFR) and patients with disease activity (n = 25, DMFNR) these groups differed significantly in CD8+ cell depletion counts (DMFR: 197.7 ± 97.1/μl; DMFNR: 298.4 ± 190.6/μl, p = 0.03) and also in cortical atrophy (DMFR: −1.7%; DMFNR: −3.2%, p = 0.01). DMFR presented reduced longitudinal GM and WM modularization and less atrophy as markers of preserved structural global network integrity in comparison to DMFNR and even NAT patients.
Conclusions
NAT treatment contributes to a reduced rate of cortical atrophy compared to DMF therapy. However, patients under DMF treatment with a stronger CD8+ T cell depletion present a more favorable response in terms of cortical integrity and GM and WM network responses. Our findings may serve as basis for the development of personalized treatment paradigms.
Background
Currently, no unequivocal predictors of disease evolution exist in patients with multiple sclerosis (MS). Cortical atrophy measurements are, however, closely associated with cumulative disability.
Objective
Here, we aim to forecast longitudinal magnetic resonance imaging (MRI)-driven cortical atrophy and clinical disability from cerebrospinal fluid (CSF) markers.
Methods
We analyzed CSF fractions of albumin and immunoglobulins (Ig) A, G, and M and their CSF to serum quotients.
Results
Widespread atrophy was highly associated with increased baseline CSF concentrations and quotients of albumin and IgA. Patients with increased CSFIgA and CSFIgM showed higher functional disability at follow-up.
Conclusion
CSF markers of blood–brain barrier integrity and specific immune response forecast emerging gray matter pathology and disease progression in MS.
Network science provides powerful access to essential organizational principles of the human brain. It has been applied in combination with graph theory to characterize brain connectivity patterns. In multiple sclerosis (MS), analysis of the brain networks derived from either structural or functional imaging provides new insights into pathological processes within the gray and white matter. Beyond focal lesions and diffuse tissue damage, network connectivity patterns could be important for closely tracking and predicting the disease course. In this review, we describe concepts of graph theory, highlight novel issues of tissue reorganization in acute and chronic neuroinflammation and address pitfalls with regard to network analysis in MS patients. We further provide an outline of functional and structural connectivity patterns observed in MS, spanning from disconnection and disruption on one hand to adaptation and compensation on the other. Moreover, we link network changes and their relation to clinical disability based on the current literature. Finally, we discuss the perspective of network science in MS for future research and postulate its role in the clinical framework.
Study Objectives
In this study, we aimed to estimate the alterations of brain networks and structural integrity linked to seizure occurrence during sleep and awake states.
Methods
Using a graph theory approach to magnetic resonance imaging-derived volumes of cortical and subcortical regions, we investigated the topological organization of structural networks in patients with sleep seizures (n = 13), patients with awake seizures (n = 12), and age- and sex-matched healthy controls (n = 10). Abnormalities in regional structural substrates (cortical volume/surface area, subcortical volumes) associated with sleep seizures and awake seizures were further analyzed.
Results
Brain networks in patients with sleep seizures compared to patients with awake seizures displayed a more integrated structural organization coupled with greater networks’ stability. When compared to healthy controls, networks in both patients with sleep and awake seizures were analogously compromised, exhibiting a less integrated and preserved organization. Patients with sleep seizures in contrast to awake seizures had larger volumes of bilateral insula, superior temporal, and orbitofrontal cortices but lower volumes of left postcentral and right middle temporal cortices in comparison to healthy controls. Patients with awake seizures compared to healthy controls displayed reduced volumes mainly in frontal, temporal, and parietal regions of right hemisphere. Volumes of hippocampus, amygdala, caudate, pallidum, and putamen were larger in patients with sleep seizures than in patients with awake seizures.
Conclusions
Despite epileptogenesis, patients with sleep and awake seizures had distinct network and structural correlates across different epilepsy types. Identified regional cortical/subcortical abnormalities can endorse the pathophysiological alterations that induce seizures during the sleep or awake states.
Dynamic flexibility and controllability of network communities in juvenile myoclonic epilepsy
(2023)
Juvenile myoclonic epilepsy (JME) is the most common syndrome within the idiopathic generalized epilepsy spectrum, manifested by myoclonic and generalized tonic-clonic seizures and spike-and-wave discharges (SWDs) on electroencephalography (EEG). Currently, the pathophysiological concepts addressing SWD generation in JME are still incomplete. In this work, we characterize the temporal and spatial organization of functional networks and their dynamic properties as derived from high-density EEG (hdEEG) recordings and MRI in 40 JME patients (25.4 ± 7.6 years, 25 females). The adopted approach allows for the construction of a precise dynamic model of ictal transformation in JME at the cortical and deep brain nuclei source levels. We implement Louvain algorithm to attribute brain regions with similar topological properties to modules during separate time windows before and during SWD generation. Afterwards, we quantify how modular assignments evolve and steer through different states towards the ictal state by measuring characteristics of flexibility and controllability. We find antagonistic dynamics of flexibility and controllability within network modules as they evolve towards and undergo ictal transformation. Prior to SWD generation, we observe concomitantly increasing flexibility (F(1,39) = 25.3, corrected p < 0.001) and decreasing controllability (F(1,39) = 55.3, p < 0.001) within the fronto-parietal module in γ-band. On a step further, during interictal SWDs as compared to preceding time windows, we notice decreasing flexibility (F(1,39) = 11.9, p < 0.001) and increasing controllability (F(1,39) = 10.1, p < 0.001) within the fronto-temporal module in γ-band. During ictal SWDs as compared to prior time windows, we demonstrate significantly decreasing flexibility (F(1,14) = 31.6; p < 0.001) and increasing controllability (F(1,14) = 44.7, p < 0.001) within the basal ganglia module. Furthermore, we show that flexibility and controllability within the fronto-temporal module of the interictal SWDs relate to seizure frequency and cognitive performance in JME patients. Our results demonstrate that detection of network modules and quantification of their dynamic properties is relevant to track the generation of SWDs. The observed flexibility and controllability dynamics reflect the reorganization of de−/synchronized connections and the ability of evolving network modules to reach a seizure-free state, respectively. These findings may advance the elaboration of network-based biomarkers and more targeted therapeutic neuromodulatory approaches in JME.
Increased migraine-free intervals with multifocal repetitive transcranial magnetic stimulation
(2021)
Introduction
Episodic migraine is a debilitating condition associated with vast impairments of health, daily living, and life quality. Several prophylactic treatments exist, having a moderate ratio of action related to side effects and therapy costs. Repetitive transcranial magnetic stimulation (rTMS) is an evidence based therapy in several neuropsychiatric conditions, showing robust efficacy in alleviating specific symptoms. However, its efficacy in migraine disorders is unequivocal and might be tightly linked to the applied rTMS protocol. We hypothesized that multifocal rTMS paradigm could improve clinical outcomes in patients with episodic migraine by reducing the number of migraine days, frequency and intensity of migraine attacks, and improve the quality of life.
Methods
We conducted an experimental, double-blind, randomized controlled study by applying a multifocal rTMS paradigm. Patients with episodic migraine with or without aura were enrolled in two centers from August 2018, to December 2019, and randomized to receive either real (n = 37) or sham (sham coil stimulation, n = 28) multifocal rTMS for six sessions over two weeks. Patients, physicians, and raters were blinded to the applied protocol. The experimental multifocal rTMS protocol included two components; first, swipe stimulation of 13 trains of 140 pulses/train, 67 Hz, 60% of RMT, and 2s intertrain interval and second, spot burst stimulation of 33 trains of 15 pulses/train, 67 Hz, 85% of RMT, and 8s intertrain interval. Reduction >50% from the baseline in migraine days (as primary outcome) and frequency and intensity of migraine attacks (as key secondary outcomes) over a 12-week period were assessed. To balance the baseline variables between the treatment arms, we applied the propensity score matching through the logistic regression.
Results
Among 65 randomized patients, sixty (age 39.7 ± 11.6; 52 females; real rTMS n = 33 and sham rTMS n = 27) completed the trial and five patients dropped out. Over 12 weeks, the responder's rate in the number of migraine days was significantly higher in the real rTMS compared to the sham group (42% vs. 26%, p < 0.05). The mean migraine days per month decreased from 7.6 to 4.3 days in the real rTMS group and from 6.2 to 4.3 days in the sham rTMS group, resulting in a difference with real vs. sham rTMS of −3.2 days (p < 0.05). Similarly, over the 12-week period, the responder's rate in the reduction of migraine attacks frequency was higher in the real rTMS compared to the sham group (42% vs 33%, p < 0.05). No serious adverse events were observed.
Conclusion
Our pilot study shows compelling evidence in a double placebo-controlled trial that multifocal rTMS is an effective and well-tolerated preventive treatment in patients with episodic migraine.
Motor skills are frequently impaired in multiple sclerosis (MS) patients following grey and white matter damage with cortical excitability abnormalities. We applied advanced diffusion imaging with 3T magnetic resonance tomography for neurite orientation dispersion and density imaging (NODDI), as well as diffusion tensor imaging (DTI) in 50 MS patients and 49 age-matched healthy controls to quantify microstructural integrity of the motor system. To assess excitability, we determined resting motor thresholds using non-invasive transcranial magnetic stimulation. As measures of cognitive-motor performance, we conducted neuropsychological assessments including the Nine-Hole Peg Test, Trail Making Test part A and B (TMT-A and TMT-B) and the Symbol Digit Modalities Test (SDMT). Patients were evaluated clinically including assessments with the Expanded Disability Status Scale. A hierarchical regression model revealed that lower neurite density index (NDI) in primary motor cortex, suggestive for axonal loss in the grey matter, predicted higher motor thresholds, i.e. reduced excitability in MS patients (p = .009, adjusted r² = 0.117). Furthermore, lower NDI was indicative of decreased cognitive-motor performance (p = .007, adjusted r² = .142 for TMT-A; p = .009, adjusted r² = .129 for TMT-B; p = .006, adjusted r² = .142 for SDMT). Motor WM tracts of patients were characterized by overlapping clusters of lowered NDI (p <.05, Cohen’s d = 0.367) and DTI-based fractional anisotropy (FA) (p <.05, Cohen’s d = 0.300), with NDI exclusively detecting a higher amount of abnormally appearing voxels. Further, orientation dispersion index of motor tracts was increased in patients compared to controls, suggesting a decreased fiber coherence (p <.05, Cohen’s d = 0.232). This study establishes a link between microstructural characteristics and excitability of neural tissue, as well as cognitive-motor performance in multiple sclerosis. We further demonstrate that the NODDI parameters neurite density index and orientation dispersion index detect a larger amount of abnormally appearing voxels in patients compared to healthy controls, as opposed to the classical DTI parameter FA. Our work outlines the potential for microstructure imaging using advanced biophysical models to forecast excitability alterations in neuroinflammation.
Deciphering the physiological patterns of motor network connectivity is a prerequisite to elucidate aberrant oscillatory transformations and elaborate robust translational models of movement disorders. In the proposed translational approach, we studied the connectivity between premotor (PMC) and primary motor cortex (M1) by recording high-density electroencephalography in humans and between caudal (CFA) and rostral forelimb (RFA) areas by recording multi-site extracellular activity in mice to obtain spectral power, functional and effective connectivity. We identified a significantly higher spectral power in β- and γ-bands in M1compared to PMC and similarly in mice CFA layers (L) 2/3 and 5 compared to RFA. We found a strong functional β-band connectivity between PMC and M1 in humans and between CFA L6 and RFA L5 in mice. We observed that in both humans and mice the direction of information flow mediated by β- and γ-band oscillations was predominantly from PMC toward M1 and from RFA to CFA, respectively. Combining spectral power, functional and effective connectivity, we revealed clear similarities between human PMC-M1 connections and mice RFA-CFA network. We propose that reciprocal connectivity of mice RFA-CFA circuitry presents a suitable model for analysis of motor control and physiological PMC-M1 functioning or pathological transformations within this network.
Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans
(2021)
Neuroinflammation is a pathophysiological hallmark of multiple sclerosis and has a close mechanistic link to neurodegeneration. Although this link is potentially targetable, robust translatable models to reliably quantify and track neuroinflammation in both mice and humans are lacking. The choroid plexus (ChP) plays a pivotal role in regulating the trafficking of immune cells from the brain parenchyma into the cerebrospinal fluid (CSF) and has recently attracted attention as a key structure in the initiation of inflammatory brain responses. In a translational framework, we here address the integrity and multidimensional characteristics of the ChP under inflammatory conditions and question whether ChP volumes could act as an interspecies marker of neuroinflammation that closely interrelates with functional impairment. Therefore, we explore ChP characteristics in neuroinflammation in patients with multiple sclerosis and in two experimental mouse models, cuprizone diet-related demyelination and experimental autoimmune encephalomyelitis. We demonstrate that ChP enlargement—reconstructed from MRI—is highly associated with acute disease activity, both in the studied mouse models and in humans. A close dependency of ChP integrity and molecular signatures of neuroinflammation is shown in the performed transcriptomic analyses. Moreover, pharmacological modulation of the blood–CSF barrier with natalizumab prevents an increase of the ChP volume. ChP enlargement is strongly linked to emerging functional impairment as depicted in the mouse models and in multiple sclerosis patients. Our findings identify ChP characteristics as robust and translatable hallmarks of acute and ongoing neuroinflammatory activity in mice and humans that could serve as a promising interspecies marker for translational and reverse-translational approaches.
The hippocampus is an anatomically compartmentalized structure embedded in highly wired networks that are essential for cognitive functions. The hippocampal vulnerability has been postulated in acute and chronic neuroinflammation in multiple sclerosis, while the patterns of occurring inflammation, neurodegeneration or compensation have not yet been described. Besides focal damage to hippocampal tissue, network disruption is an important contributor to cognitive decline in multiple sclerosis patients. We postulate sex-specific trajectories in hippocampal network reorganization and regional integrity and address their relationship to markers of neuroinflammation, cognitive/memory performance and clinical severity. In a large cohort of multiple sclerosis patients (n = 476; 337 females, age 35 ± 10 years, disease duration 16 ± 14 months) and healthy subjects (n = 110, 54 females; age 34 ± 15 years), we utilized MRI at baseline and at 2-year follow-up to quantify regional hippocampal volumetry and reconstruct single-subject hippocampal networks. Through graph analytical tools we assessed the clustered topology of the hippocampal networks. Mixed-effects analyses served to model sex-based differences in hippocampal network and subfield integrity between multiple sclerosis patients and healthy subjects at both time points and longitudinally. Afterwards, hippocampal network and subfield integrity were related to clinical and radiological variables in dependency of sex attribution. We found a more clustered network architecture in both female and male patients compared to their healthy counterparts. At both time points, female patients displayed a more clustered network topology in comparison to male patients. Over time, multiple sclerosis patients developed an even more clustered network architecture, though with a greater magnitude in females. We detected reduced regional volumes in most of the addressed hippocampal subfields in both female and male patients compared to healthy subjects. Compared to male patients, females displayed lower volumes of para- and presubiculum but higher volumes of the molecular layer. Longitudinally, volumetric alterations were more pronounced in female patients, which showed a more extensive regional tissue loss. Despite a comparable cognitive/memory performance between female and male patients over the follow-up period, we identified a strong interrelation between hippocampal network properties and cognitive/memory performance only in female patients. Our findings evidence a more clustered hippocampal network topology in female patients with a more extensive subfield volume loss over time. A stronger relation between cognitive/memory performance and the network topology in female patients suggests greater entrainment of the brain's reserve. These results may serve to adapt sex-targeted neuropsychological interventions.