• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help

Refine

Has Fulltext

  • yes (5)
  • no (2)

Author

  • Mücke, Oliver (7)
  • Plass, Christoph (7)
  • Weichenhan, Dieter (4)
  • Claus, Rainer (3)
  • Lipka, Daniel B. (3)
  • Schlesner, Matthias (3)
  • Bauer, Mario (2)
  • Bauer, Tobias (2)
  • Bieg, Matthias (2)
  • Borte, Michael (2)
+ more

Year of publication

  • 2024 (1)
  • 2023 (1)
  • 2016 (4)
  • 2013 (1)

Document Type

  • Article (6)
  • Preprint (1)

Language

  • English (7)

Keywords

  • Molecular Biology (2)
  • Applied Mathematics (1)
  • Cancer Research (1)
  • Cellular and Molecular Neuroscience (1)
  • Clinical Neurology (1)
  • Computational Theory and Mathematics (1)
  • Developmental Biology (1)
  • General Agricultural and Biological Sciences (1)
  • General Biochemistry, Genetics and Molecular Biology (1)
  • General Immunology and Microbiology (1)
+ more

Institute

  • Fakultät für Angewandte Informatik (4)
  • Institut für Informatik (4)
  • Lehrstuhl für Biomedizinische Informatik, Data Mining und Data Analytics (3)
  • Medizinische Fakultät (3)
  • Professur für personalisierte Tumormedizin und molekulare Onkologie (3)
  • Universitätsklinikum (3)
  • Lehrstuhl für Modellierung und Simulation biologischer Prozesse (1)
  • Nachhaltigkeitsziele (1)
  • Ziel 3 - Gesundheit und Wohlergehen (1)

7 search hits

  • 1 to 7
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Prenatal maternal stress and wheeze in children: novel insights into epigenetic regulation (2016)
Trump, Saskia ; Bieg, Matthias ; Gu, Zuguang ; Thürmann, Loreen ; Bauer, Tobias ; Bauer, Mario ; Ishaque, Naveed ; Röder, Stefan ; Gu, Lei ; Herberth, Gunda ; Lawerenz, Christian ; Borte, Michael ; Schlesner, Matthias ; Plass, Christoph ; Diessl, Nicolle ; Eszlinger, Markus ; Mücke, Oliver ; Elvers, Horst-Dietrich ; Wissenbach, Dirk K. ; von Bergen, Martin ; Herrmann, Carl ; Weichenhan, Dieter ; Wright, Rosalind J. ; Lehmann, Irina ; Eils, Roland
Environment‐induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children (2016)
Bauer, Tobias ; Trump, Saskia ; Ishaque, Naveed ; Thürmann, Loreen ; Gu, Lei ; Bauer, Mario ; Bieg, Matthias ; Gu, Zuguang ; Weichenhan, Dieter ; Mallm, Jan‐Philipp ; Röder, Stefan ; Herberth, Gunda ; Takada, Eiko ; Mücke, Oliver ; Winter, Marcus ; Junge, Kristin M. ; Grützmann, Konrad ; Rolle‐Kampczyk, Ulrike ; Wang, Qi ; Lawerenz, Christian ; Borte, Michael ; Polte, Tobias ; Schlesner, Matthias ; Schanne, Michaela ; Wiemann, Stefan ; Geörg, Christina ; Stunnenberg, Hendrik G. ; Plass, Christoph ; Rippe, Karsten ; Mizuguchi, Junichiro ; Herrmann, Carl ; Eils, Roland ; Lehmann, Irina
Promoter DNA methylation regulates progranulin expression and is altered in FTLD (2013)
Banzhaf-Strathmann, Julia ; Claus, Rainer ; Mücke, Oliver ; Rentzsch, Kristin ; van der Zee, Julie ; Engelborghs, Sebastiaan ; De Deyn, Peter P ; Cruts, Marc ; van Broeckhoven, Christine ; Plass, Christoph ; Edbauer, Dieter
Epigenetic silencing of AKAP12 in juvenile myelomonocytic leukemia (2016)
Wilhelm, Thomas ; Lipka, Daniel B. ; Witte, Tania ; Wierzbinska, Justyna A. ; Fluhr, Silvia ; Helf, Monika ; Mücke, Oliver ; Claus, Rainer ; Konermann, Carolin ; Nöllke, Peter ; Niemeyer, Charlotte M. ; Flotho, Christian ; Plass, Christoph
Identification of cell type-specific differences in erythropoietin receptor signaling in primary erythroid and lung cancer cells (2016)
Merkle, Ruth ; Steiert, Bernhard ; Salopiata, Florian ; Depner, Sofia ; Raue, Andreas ; Iwamoto, Nao ; Schelker, Max ; Hass, Helge ; Wäsch, Marvin ; Böhm, Martin E. ; Mücke, Oliver ; Lipka, Daniel B. ; Plass, Christoph ; Lehmann, Wolf D. ; Kreutz, Clemens ; Timmer, Jens ; Schilling, Marcel ; Klingmüller, Ursula
Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types.
Predictive value of DNA methylation patterns in AML patients treated with an azacytidine containing induction regimen (2023)
Schmutz, Maximilian ; Zucknick, Manuela ; Schlenk, Richard F. ; Mertens, Daniel ; Benner, Axel ; Weichenhan, Dieter ; Mücke, Oliver ; Döhner, Konstanze ; Plass, Christoph ; Bullinger, Lars ; Claus, Rainer
Background Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. Dysregulation of the epigenetic machinery is a significant contributor to disease development. Some AML patients benefit from treatment with hypomethylating agents (HMAs), but no predictive biomarkers for therapy response exist. Here, we investigated whether unbiased genome-wide assessment of pre-treatment DNA-methylation profiles in AML bone marrow blasts can help to identify patients who will achieve a remission after an azacytidine-containing induction regimen. Results A total of n = 155 patients with newly diagnosed AML treated in the AMLSG 12-09 trial were randomly assigned to a screening and a refinement and validation cohort. The cohorts were divided according to azacytidine-containing induction regimens and response status. Methylation status was assessed for 664,227 500-bp-regions using methyl-CpG immunoprecipitation-seq, resulting in 1755 differentially methylated regions (DMRs). Top regions were distilled and included genes such as WNT10A and GATA3. 80% of regions identified as a hit were represented on HumanMethlyation 450k Bead Chips. Quantitative methylation analysis confirmed 90% of these regions (36 of 40 DMRs). A classifier was trained using penalized logistic regression and fivefold cross validation containing 17 CpGs. Validation based on mass spectra generated by MALDI-TOF failed (AUC 0.59). However, discriminative ability was maintained by adding neighboring CpGs. A recomposed classifier with 12 CpGs resulted in an AUC of 0.77. When evaluated in the non-azacytidine containing group, the AUC was 0.76. Conclusions Our analysis evaluated the value of a whole genome methyl-CpG screening assay for the identification of informative methylation changes. We also compared the informative content and discriminatory power of regions and single CpGs for predicting response to therapy. The relevance of the identified DMRs is supported by their association with key regulatory processes of oncogenic transformation and support the idea of relevant DMRs being enriched at distinct loci rather than evenly distribution across the genome. Predictive response to therapy could be established but lacked specificity for treatment with azacytidine. Our results suggest that a predictive epigenotype carries its methylation information at a complex, genome-wide level, that is confined to regions, rather than to single CpGs. With increasing application of combinatorial regimens, response prediction may become even more complicated.
Pipeline Olympics: continuable benchmarking of computational workflows for DNA methylation sequencing data against an experimental gold standard (2024)
Lin, Yu-Yu ; Breuer, Kersten ; Weichenhan, Dieter ; Lafrenz, Pascal ; Wilk, Agata ; Chepeleva, Marina ; Mücke, Oliver ; Schönung, Maximilian ; Petermann, Franziska ; Kensche, Philipp ; Weiser, Lena ; Thommen, Frank ; Giacomelli, Gideon ; Nordstroem, Karl ; Gonzalez-Avalos, Edahi ; Merkel, Angelika ; Kretzmer, Helene ; Fischer, Jonas ; Krämer, Stephen ; Iskar, Murat ; Wolf, Stephan ; Buchhalter, Ivo ; Esteller, Manel ; Lawerenz, Chris ; Twardziok, Sven ; Zapatka, Marc ; Hovestadt, Volker ; Schlesner, Matthias ; Schulz, Marcel ; Hoffmann, Steve ; Gerhauser, Clarissa ; Walter, Jörn ; Hartmann, Mark ; Lipka, Daniel B. ; Assenov, Yassen ; Bock, Christoph ; Plass, Christoph ; Toth, Reka ; Lutsik, Pavlo
  • 1 to 7

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks