• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help

Refine

Has Fulltext

  • yes (6)
  • no (2)

Author

  • Miller, Silvia (8)
  • Märkl, Bruno (6)
  • Schenkirsch, Gerhard (4)
  • Bauer, Svenja (3)
  • Martin, Benedikt (3)
  • Probst, Andreas (3)
  • Banner, Bettina Monika (2)
  • Brendel, Eva-Maria (2)
  • Dintner, Sebastian (2)
  • Grosser, Bianca (2)
+ more

Year of publication

  • 2024 (1)
  • 2023 (2)
  • 2022 (2)
  • 2021 (3)

Document Type

  • Article (8)

Language

  • English (6)
  • German (2)

Keywords

  • colon cancer (2)
  • ALK (1)
  • Cell Biology (1)
  • Gastroenterology (1)
  • General Medicine (1)
  • Infectious Diseases (1)
  • Microbiology (medical) (1)
  • NUT (1)
  • Pathology and Forensic Medicine (1)
  • Radiology, Nuclear Medicine and imaging (1)
+ more

Institute

  • Lehrstuhl für Allgemeine und Spezielle Pathologie (8)
  • Medizinische Fakultät (8)
  • Universitätsklinikum (8)
  • Lehrstuhl für Allgemein- und Viszeralchirurgie (5)
  • Lehrstuhl für Innere Medizin mit Schwerpunkt Hämatologie und Onkologie (5)
  • Nachhaltigkeitsziele (5)
  • Ziel 3 - Gesundheit und Wohlergehen (5)
  • Lehrstuhl für Innere Medizin mit Schwerpunkt Gastroenterologie (4)
  • Institut für Mathematik (2)
  • Lehrstuhl für Rechnerorientierte Statistik und Datenanalyse (2)
+ more

8 search hits

  • 1 to 8
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Stroma AReactive Invasion Front Areas (SARIFA) - a new easily to determine biomarker in Colon cancer - results of a retrospective study (2021)
Martin, Benedikt ; Grosser, Bianca ; Kempkens, Lana ; Miller, Silvia ; Bauer, Svenja ; Dhillon, Christine ; Banner, Bettina Monika ; Brendel, Eva-Maria ; Sipos, Éva ; Vlasenko, Dmytro ; Schenkirsch, Gerhard ; Schiele, Stefan ; Müller, Gernot ; Märkl, Bruno
Simple Summary Many studies have used histomorphological features to more precisely predict the prognosis of patients with colon cancer, focusing on tumor budding, poorly differentiated clusters, and the tumor–stroma ratio. Here, we introduce SARIFA: Stroma AReactive Invasion Front Area(s). We defined SARIFA as the direct contact between a tumor gland/tumor cell cluster (≥5 cells) and inconspicuous surrounding adipose tissue in the invasion front. SARIFA shows an excellent interobserver reliability and high prognostic value and is thus a promising histomorphological prognostic indicator for adipose-infiltrative adenocarcinomas of the colon. Abstract Many studies have used histomorphological features to more precisely predict the prognosis of patients with colon cancer, focusing on tumor budding, poorly differentiated clusters, and the tumor–stroma ratio. Here, we introduce SARIFA: Stroma AReactive Invasion Front Area(s). We defined SARIFA as the direct contact between a tumor gland/tumor cell cluster (≥5 cells) and inconspicuous surrounding adipose tissue in the invasion front. In this retrospective, single-center study, we classified 449 adipose-infiltrative adenocarcinomas (not otherwise specified) from two groups based on SARIFA and found 25% of all tumors to be SARIFA-positive. Kappa values between the two pathologists were good/very good: 0.77 and 0.87. Patients with SARIFA-positive tumors had a significantly shorter colon-cancer-specific survival (p = 0.008, group A), absence of metastasis, and overall survival (p < 0.001, p = 0.003, group B). SARIFA was significantly associated with adverse features such as pT4 stage, lymph node metastasis, tumor budding, and higher tumor grade. Moreover, SARIFA was confirmed as an independent prognostic indicator for colon-cancer-specific survival (p = 0.011, group A). SARIFA assessment was very quick (<1 min). Because of low interobserver variability and good prognostic significance, SARIFA seems to be a promising histomorphological prognostic indicator in adipose-infiltrative adenocarcinomas of the colon. Further studies should validate our results and also determine whether SARIFA is a universal prognostic indicator in solid cancers.
Deep learning prediction of metastasis in locally advanced colon cancer using binary histologic tumor images (2021)
Schiele, Stefan ; Arndt, Tim Tobias ; Martin, Benedikt ; Miller, Silvia ; Bauer, Svenja ; Banner, Bettina Monika ; Brendel, Eva-Maria ; Schenkirsch, Gerhard ; Anthuber, Matthias ; Huss, Ralf ; Märkl, Bruno ; Müller, Gernot
Semiautomatic analysis of tumor proportion in colon cancer: lessons from a validation study (2021)
Miller, Silvia ; Bauer, Svenja ; Schrempf, Matthias ; Schenkirsch, Gerhard ; Probst, Andreas ; Märkl, Bruno ; Martin, Benedikt
Benigne und maligne Neoplasien der Nebenniere aus der Sicht der Pathologie (2022)
Miller, Silvia ; Schaller, Tina
ALK, NUT, and TRK do not play relevant roles in gastric cancer — results of an immunohistochemical study in a large series (2022)
Glückstein, Marie-Isabelle ; Dintner, Sebastian ; Miller, Silvia ; Vlasenko, Dmytro ; Schenkirsch, Gerhard ; Agaimy, Abbas ; Märkl, Bruno ; Grosser, Bianca
ALK, NUT, and TRK are rare molecular aberrations that are pathognomonic for specific rare tumors. In low frequencies, however, they are found in a wide range of other tumor entities. This study aimed to investigate the frequency, association with clinicopathological characteristics, and prognosis of the immunohistochemical expressions of ALK, NUT, and TRK in 477 adenocarcinomas of the stomach and gastroesophageal junction. Seven cases (1.5%) showed an expression of TRK. In NGS, no NTRK fusion was confirmed. No case with ALK or NUT expression was detected. ALK, NUT, and NTRK expression does not seem to play an important role in gastric carcinomas.
Fatal cases after Omicron BA.1 and BA.2 infection: results of an autopsy study (2023)
Märkl, Bruno ; Dintner, Sebastian ; Schaller, Tina ; Sipos, Eva ; Kling, Elisabeth ; Miller, Silvia ; Farfán López, Francisco ; Grochowski, Przemyslaw ; Reitsam, Nic ; Waidhauser, Johanna ; Hirschbühl, Klaus ; Spring, Oliver ; Fuchs, Andre ; Wibmer, Thomas ; Boor, Peter ; Beer, Martin ; Wylezich, Claudia
Detection of duodenal villous atrophy on endoscopic images using a deep learning algorithm (2023)
Scheppach, Markus W. ; Rauber, David ; Stallhofer, Johannes ; Muzalyova, Anna ; Otten, Vera ; Manzeneder, Carolin ; Schwamberger, Tanja ; Wanzl, Julia ; Schlottmann, Jakob ; Tadic, Vidan ; Probst, Andreas ; Schnoy, Elisabeth ; Römmele, Christoph ; Fleischmann, Carola ; Meinikheim, Michael ; Miller, Silvia ; Märkl, Bruno ; Stallmach, Andreas ; Palm, Christoph ; Messmann, Helmut ; Ebigbo, Alanna
Background and aims Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance. Methods A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep learning model to detect villous atrophy. An external data set was used to test the algorithm, in addition to six fellows and four board certified gastroenterologists. Fellows could consult the AI algorithm’s result during the test. From their consultation distribution, a stratification of test images into “easy” and “difficult” was performed and used for classified performance measurement. Results External validation of the AI algorithm yielded values of 90 %, 76 %, and 84 % for sensitivity, specificity, and accuracy, respectively. Fellows scored values of 63 %, 72 % and 67 %, while the corresponding values in experts were 72 %, 69 % and 71 %, respectively. AI consultation significantly improved all trainee performance statistics. While fellows and experts showed significantly lower performance for “difficult” images, the performance of the AI algorithm was stable. Conclusion In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of villous atrophy on endoscopic still images. AI decision support significantly improved the performance of non-expert endoscopists. The stable performance on “difficult” images suggests a further positive add-on effect in challenging cases.
Akutes Abdomen – seltene Ursache bei einer 80-jährigen Patientin unter immunsuppressiver Therapie (2024)
Schlottmann, Jakob ; Miller, Silvia ; Scheurig-Münkler, Christian ; Merkl, Caroline ; Weber, Tobias ; Eser, S. ; Fuchs, André ; Messmann, Helmut ; Probst, Andreas
Eine 80-jährige Frau stellte sich zur Abklärung abdomineller Schmerzen vor. Vorausgegangen war die Diagnosestellung einer Autoimmunhepatitis mit Einleitung einer immunsuppressiven Therapie und Auftritt zweier Pneumonien mit opportunistischen Erregern. Die Bildgebung erbrachte einen „omental cake“ mit Verdacht auf Peritonealkarzinose. Bei Auftritt eines akuten Abdomens erfolgte eine explorative Laparotomie, hierbei zeigten sich intraabdominelle Abszesse. Anhand von Blutkulturen und des intraoperativ gewonnenen Materials wurde eine disseminierte Nocardiose diagnostiziert. Die Patientin verstarb aufgrund einer fulminant verlaufenen Sepsis.
  • 1 to 8

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks