Refine
Year of publication
Document Type
- Conference Proceeding (72)
- Article (29)
- Preprint (2)
- Book (1)
- Part of a Book (1)
Language
- English (105)
Keywords
In this paper, we learn dynamics models for parametrized families of dynamical systems with varying properties. The dynamics models are formulated as stochastic processes conditioned on a latent context variable which is inferred from observed transitions of the respective system. The probabilistic formulation allows us to compute an action sequence which, for a limited number of environment interactions, optimally explores the given system within the parametrized family. This is achieved by steering the system through transitions being most informative for the context variable. We demonstrate the effectiveness of our method for exploration on a non-linear toy-problem and two well-known reinforcement learning environments.
Representing scenes at the granularity of objects is a prerequisite for scene understanding and decision making. We propose PriSMONet, a novel approach based on Prior Shape knowledge for learning Multi-Object 3D scene decomposition and representations from single images. Our approach learns to decompose images of synthetic scenes with multiple objects on a planar surface into its constituent scene objects and to infer their 3D properties from a single view. A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image. By differentiable rendering, we train our model to decompose scenes from RGB-D images in a self-supervised way. The 3D shapes are represented continuously in function-space as signed distance functions which we pre-train from example shapes in a supervised way. These shape priors provide weak supervision signals to better condition the challenging overall learning task. We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation.