• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help

Refine

Has Fulltext

  • yes (10)
  • no (5)

Author

  • Bahnemann, Janina (15)
  • Enders, Anton (15)
  • Lavrentieva, Antonina (3)
  • Preuß, John-Alexander (3)
  • Scheper, Thomas (3)
  • Winkler, Steffen (3)
  • Arshavsky-Graham, Sofia (2)
  • Epping, Niklas-Maximilian (2)
  • Heisterkamp, Alexander (2)
  • Heuer, Christopher (2)
+ more

Year of publication

  • 2025 (1)
  • 2024 (1)
  • 2022 (3)
  • 2021 (4)
  • 2020 (3)
  • 2019 (3)

Document Type

  • Article (12)
  • Part of a Book (3)

Language

  • English (14)
  • German (1)

Keywords

  • Bioengineering (5)
  • Biotechnology (5)
  • Biomaterials (3)
  • Environmental Engineering (2)
  • General Chemistry (2)
  • General Materials Science (2)
  • Analytical Chemistry (1)
  • Applied Microbiology and Biotechnology (1)
  • Biochemistry (1)
  • Biomedical Engineering (1)
+ more

Institute

  • Institut für Physik (15)
  • Lehrstuhl für Technische Biologie (15)
  • Mathematisch-Naturwissenschaftlich-Technische Fakultät (15)
  • Nachhaltigkeitsziele (3)
  • Ziel 9 - Industrie, Innovation und Infrastruktur (3)

15 search hits

  • 1 to 15
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
3D‐printed autoclavable plant holders to facilitate large‐scale protein production in plants (2022)
Chuang, Ling ; Enders, Anton ; Offermann, Sascha ; Bahnemann, Janina ; Franke, Jakob
3D‐Druck miniaturisierter und mikrofluidischer Systeme: von der Zellkultur zur Biosensorik (2022)
Enders, Anton ; Bahnemann, Janina
3D printed microfluidic spiral separation device for continuous, pulsation-free and controllable CHO cell retention (2021)
Enders, Anton ; Preuß, John-Alexander ; Bahnemann, Janina
3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation (2021)
Wang, Haoran ; Enders, Anton ; Preuß, John-Alexander ; Bahnemann, Janina ; Heisterkamp, Alexander ; Torres-Mapa, Maria Leilani
3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection (2021)
Arshavsky-Graham, Sofia ; Enders, Anton ; Ackerman, Shanny ; Bahnemann, Janina ; Segal, Ester
Integration of optical manipulation in 3D printed microfluidic devices (Conference Presentation) (2020)
Wang, Haoran ; Enders, Anton ; Heisterkamp, Alexander ; Bahnemann, Janina ; Torres-Mapa, Maria Leilani
Integration of porous silicon-based optical aptasensors in a 3D-printed microfluidic platform for protein protection (2019)
Arshavsky-Graham, Sofia ; Epping, Niklas-Maximilian ; Enders, Anton ; Scheper, Thomas ; Bahnemann, Janina ; Segal, Ester
Real-time live-cell imaging technology enables high-throughput screening to verify in vitro biocompatibility of 3D printed materials (2019)
Siller, Ina G. ; Enders, Anton ; Steinwedel, Tobias ; Epping, Niklas-Maximilian ; Kirsch, Marline ; Lavrentieva, Antonina ; Scheper, Thomas ; Bahnemann, Janina
3D printed microfluidic mixers: a comparative study on mixing unit performances (2019)
Enders, Anton ; Siller, Ina G. ; Urmann, Katharina ; Hoffmann, Michael R. ; Bahnemann, Janina
3D printing in biotechnology: an insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics (2022)
Heuer, Christopher ; Preuß, John-Alexander ; Habib, Taieb ; Enders, Anton ; Bahnemann, Janina
Microfluidic systems and organ (human) on a chip (2021)
Bahnemann, Janina ; Enders, Anton ; Winkler, Steffen
Characterization of a customized 3D-printed cell culture system using clear, translucent acrylate that enables optical online monitoring (2020)
Siller, Ina Gerhild ; Enders, Anton ; Gellermann, Pia ; Winkler, Steffen ; Lavrentieva, Antonina ; Scheper, Thomas ; Bahnemann, Janina
Fabrication of stiffness gradients of GelMA hydrogels using a 3D printed micromixer (2020)
Lavrentieva, Antonina ; Fleischhammer, Tabea ; Enders, Anton ; Pirmahboub, Hamidreza ; Bahnemann, Janina ; Pepelanova, Iliyana
Towards small scale: overview and applications of microfluidics in biotechnology (2024)
Enders, Anton ; Grünberger, Alexander ; Bahnemann, Janina
Thanks to recent and continuing technological innovations, modern microfluidic systems are increasingly offering researchers working across all fields of biotechnology exciting new possibilities (especially with respect to facilitating high throughput analysis, portability, and parallelization). The advantages offered by microfluidic devices—namely, the substantially lowered chemical and sample consumption they require, the increased energy and mass transfer they offer, and their comparatively small size—can potentially be leveraged in every sub-field of biotechnology. However, to date, most of the reported devices have been deployed in furtherance of healthcare, pharmaceutical, and/or industrial applications. In this review, we consider examples of microfluidic and miniaturized systems across biotechnology sub-fields. In this context, we point out the advantages of microfluidics for various applications and highlight the common features of devices and the potential for transferability to other application areas. This will provide incentives for increased collaboration between researchers from different disciplines in the field of biotechnology.
A 3D‐printed microfluidic sensor platform for online bioprocess monitoring (2025)
Heuer, Christopher ; Enders, Anton ; Winkler, Steffen ; Klaßen, Martin ; Teutenberg, Thorsten ; Bahnemann, Janina
In order to screen for optimal bioprocess parameters at higher throughput, researchers developing new biopharmaceuticals are increasingly turning to miniaturized cultivation systems with reduced space and media consumption. However, these systems still face challenges related to the continuous monitoring of critical bioprocess parameters, in particular, because sensor integration is often difficult, and sample volumes for offline measurements are limited. In this work, a novel 3D-printed microfluidic lab-on-a-chip sensor platform is presented, specifically designed to be compatible with a range of cultivation systems (including shake flasks, bioreactors, and custom microbioreactors). The microfluidic system acts as a miniaturized bypass, integrating sensors for real-time monitoring of key bioprocess parameters (such as pH, pO₂, pCO₂, glucose, and lactate) without compromising culture volume. This system has been successfully applied in a proof-of-concept for the cultivation of Escherichia coli and Saccharomyces cerevisiae. In addition, this platform also includes an integrated sampling unit for small-volume collection, thereby potentially enabling the analysis of complex analyte mixtures such as amino acids or recombinant proteins. The presented system thus represents a valuable tool for both real-time online monitoring and offline analysis, contributing to the optimization of biopharmaceutical production processes.
  • 1 to 15

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks