• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help

Refine

Has Fulltext

  • yes (5)

Author

  • ElHarouni, Dina (5)
  • Oppermann, Sina (5)
  • Peterziel, Heike (5)
  • Schlesner, Matthias (5)
  • Witt, Olaf (5)
  • Berker, Yannick (4)
  • Oehme, Ina (4)
  • Fiesel, Petra (3)
  • Jäger, Natalie (3)
  • Milde, Till (3)
+ more

Year of publication

  • 2023 (1)
  • 2022 (4)

Document Type

  • Article (5)

Language

  • English (5)

Keywords

  • Cancer Research (2)
  • Oncology (2)
  • Computer Science Applications (1)
  • Electrical and Electronic Engineering (1)
  • Neurology (clinical) (1)
  • Pharmacology (1)
  • Radiological and Ultrasound Technology (1)
  • Software (1)

Institute

  • Fakultät für Angewandte Informatik (5)
  • Institut für Informatik (5)
  • Lehrstuhl für Biomedizinische Informatik, Data Mining und Data Analytics (5)
  • Nachhaltigkeitsziele (1)
  • Ziel 3 - Gesundheit und Wohlergehen (1)

5 search hits

  • 1 to 5
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
iTReX: Interactive exploration of mono- and combination therapy dose response profiling data (2022)
ElHarouni, Dina ; Berker, Yannick ; Peterziel, Heike ; Gopisetty, Apurva ; Turunen, Laura ; Kreth, Sina ; Stainczyk, Sabine A. ; Oehme, Ina ; Pietiäinen, Vilja ; Jäger, Natalie ; Witt, Olaf ; Schlesner, Matthias ; Oppermann, Sina
Multiomics analysis of pediatric solid tumors within the INFORM precision oncology study: from functional drug profiling to biomarker identification [Abstract] (2022)
ElHarouni, Dina ; Peterziel, Heike ; Schramm, Kathrin ; Milde, Till ; Oppermann, Sina ; Öhme, Ina ; Witt, Olaf ; Schlesner, Matthias ; Jager, Natalie
Patient-by-patient deep transfer learning for drug-response profiling using confocal fluorescence microscopy of pediatric patient-derived tumor-cell spheroids (2022)
Berker, Yannick ; ElHarouni, Dina ; Peterziel, Heike ; Fiesel, Petra ; Witt, Olaf ; Oehme, Ina ; Schlesner, Matthias ; Oppermann, Sina
Image-based phenotypic drug profiling is receiving increasing attention in drug discovery and precision medicine. Compared to classical end-point measurements quantifying drug response, image-based profiling enables both the quantification of drug response and characterization of disease entities and drug-induced cell-death phenotypes. Here, we aim to quantify image-based drug responses in patient-derived 3D spheroid tumor cell cultures, tackling the challenges of a lack of single-cell-segmentation methods and limited patient-derived material. Therefore, we investigate deep transfer learning with patient-by-patient fine-tuning for cell-viability quantification. We fine-tune a convolutional neural network (pre-trained on ImageNet) with 210 control images specific to a single training cell line and 54 additional screen -specific assay control images. This method of image-based drug profiling is validated on 6 cell lines with known drug sensitivities, and further tested with primary patient-derived samples in a medium-throughput setting. Network outputs at different drug concentrations are used for drug-sensitivity scoring, and dense-layer activations are used in t-distributed stochastic neighbor embeddings of drugs to visualize groups of drugs with similar cell-death phenotypes. Image-based cell-line experiments show strong correlation to metabolic results ( R≈0.7 ) and confirm expected hits, indicating the predictive power of deep learning to identify drug-hit candidates for individual patients. In patient-derived samples, combining drug sensitivity scoring with phenotypic analysis may provide opportunities for complementary combination treatments. Deep transfer learning with patient-by-patient fine-tuning is a promising, segmentation-free image-analysis approach for precision medicine and drug discovery.
OTHR-04. Development of a functional plattform for real-time personalized drug sensitivity profiling of patient-derived 3D fresh tumor tissue cultures in the pediatric precision oncology program INFORM [Abstract] (2023)
Peterziel, Heike ; Jamaladdin, Nora ; ElHarouni, Dina ; Gerloff, Xenia F. ; Herter, Sonja ; Fiesel, Petra ; Berker, Yannick ; Blattner-Johnson, Mirjam ; Schramm, Kathrin ; Jones, Barbara C. ; Reuss, David ; Turunen, Laura ; Friedenauer, Aileen ; Holland-Letz, Tim ; Sill, Martin ; Weiser, Lena ; Previti, Christopher ; Balasubramanian, Gnanaprakash ; Gerber, Nicolas U. ; Gojo, Johannes ; Hutter, Caroline ; Øra, Ingrid ; Lohi, Olli ; Kattamis, Antonis ; de Wilde, Bram ; Westermann, Frank ; Tippelt, Stephan ; Graf, Norbert ; Nathrath, Michaela ; Sparber-Sauer, Monika ; Sehested, Astrid ; Kramm, Christof M. ; Dirksen, Uta ; Kallioniemi, Olli ; Pfister, Stefan M. ; van Tilburg, Cornelis M. ; Jones, David T. W. ; Saarela, Jani ; Pietiäinen, Vilja ; Jäger, Natalie ; Schlesner, Matthias ; Kopp-Schneider, Annette ; Oppermann, Sina ; Milde, Till ; Witt, Olaf ; Oehme, Ina
Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM (2022)
Peterziel, Heike ; Jamaladdin, Nora ; ElHarouni, Dina ; Gerloff, Xenia F. ; Herter, Sonja ; Fiesel, Petra ; Berker, Yannick ; Blattner-Johnson, Mirjam ; Schramm, Kathrin ; Jones, Barbara C. ; Reuss, David ; Turunen, Laura ; Friedenauer, Aileen ; Holland-Letz, Tim ; Sill, Martin ; Weiser, Lena ; Previti, Christopher ; Balasubramanian, Gnanaprakash ; Gerber, Nicolas U. ; Gojo, Johannes ; Hutter, Caroline ; Øra, Ingrid ; Lohi, Olli ; Kattamis, Antonis ; de Wilde, Bram ; Westermann, Frank ; Tippelt, Stephan ; Graf, Norbert ; Nathrath, Michaela ; Sparber-Sauer, Monika ; Sehested, Astrid ; Kramm, Christof M. ; Dirksen, Uta ; Kallioniemi, Olli ; Pfister, Stefan M. ; van Tilburg, Cornelis M. ; Jones, David T. W. ; Saarela, Jani ; Pietiäinen, Vilja ; Jäger, Natalie ; Schlesner, Matthias ; Kopp-Schneider, Annette ; Oppermann, Sina ; Milde, Till ; Witt, Olaf ; Oehme, Ina
The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75–78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.
  • 1 to 5

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks