• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help

Refine

Has Fulltext

  • yes (19)
  • no (4)

Author

  • Luessi, Felix (23)
  • Groppa, Sergiu (18)
  • Zipp, Frauke (18)
  • Bittner, Stefan (16)
  • Meuth, Sven G. (16)
  • Bayas, Antonios (15)
  • Klotz, Luisa (14)
  • Wildemann, Brigitte (14)
  • Paul, Friedemann (13)
  • Tumani, Hayrettin (13)
+ more

Year of publication

  • 2025 (2)
  • 2024 (1)
  • 2023 (1)
  • 2022 (4)
  • 2020 (7)
  • 2019 (5)
  • 2018 (1)
  • 2017 (1)
  • 2016 (1)

Document Type

  • Article (23)

Language

  • English (22)
  • German (1)

Keywords

  • Neurology (8)
  • Neurology (clinical) (6)
  • Clinical Neurology (2)
  • General Neuroscience (2)
  • Immunology (2)
  • Psychiatry and Mental health (2)
  • Anesthesiology and Pain Medicine (1)
  • Cellular and Molecular Neuroscience (1)
  • General Medicine (1)
  • Immunology and Allergy (1)
+ more

Institute

  • Lehrstuhl für Neurologie (15)
  • Medizinische Fakultät (15)
  • Universitätsklinikum (15)
  • Fakultät für Angewandte Informatik (11)
  • Institut für Informatik (11)
  • Professur für Informatik in der Medizintechnik (11)
  • Nachhaltigkeitsziele (1)
  • Ziel 3 - Gesundheit und Wohlergehen (1)

23 search hits

  • 1 to 20
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Can we predict cognitive decline after initial diagnosis of multiple sclerosis? Results from the German national early MS cohort (KKNMS) ()
Treatment choices and neuropsychological symptoms of a large cohort of early MS ()
Complete Epstein-Barr virus seropositivity in a large cohort of patients with early multiple sclerosis ()
Longitudinal prevalence and determinants of pain in multiple sclerosis: results from the German National Multiple Sclerosis Cohort study ()
Clinical implications of serum neurofilament in newly diagnosed MS patients: a longitudinal multicentre cohort study ()
Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity ()
Diagnostik und Therapie von Tuberkulose unter Immuntherapien für Multiple Sklerose: aktueller Stand und Empfehlungen in Deutschland ()
Association of obesity with disease outcome in multiple sclerosis ()
BackgroundObesity reportedly increases the risk for developing multiple sclerosis (MS), but little is known about its association with disability accumulation.MethodsThis nationwide longitudinal cohort study included 1066 individuals with newly diagnosed MS from the German National MS cohort. Expanded Disability Status Scale (EDSS) scores, relapse rates, MRI findings and choice of immunotherapy were compared at baseline and at years 2, 4 and 6 between obese (body mass index, BMI ≥30 kg/m2) and non-obese (BMI <30 kg/m2) patients and correlated with individual BMI values.ResultsPresence of obesity at disease onset was associated with higher disability at baseline and at 2, 4 and 6 years of follow-up (p<0.001). Median time to reach EDSS 3 was 0.99 years for patients with BMI ≥30 kg/m2 and 1.46 years for non-obese patients. Risk to reach EDSS 3 over 6 years was significantly increased in patients with BMI ≥30 kg/m2 compared with patients with BMI <30 kg/m2 after adjustment for sex, age, smoking (HR 1.87; 95% CI 1.3 to 2.6; log-rank test p<0.001) and independent of disease-modifying therapies. Obesity was not significantly associated with higher relapse rates, increased number of contrast-enhancing MRI lesions or higher MRI T2 lesion burden over 6 years of follow-up.ConclusionsObesity in newly diagnosed patients with MS is associated with higher disease severity and poorer outcome. Obesity management could improve clinical outcome of MS.
Real-world evidence on siponimod treatment in patients with secondary progressive multiple sclerosis ()
Altered grey matter integrity and network vulnerability relate to epilepsy occurrence in patients with multiple sclerosis ()
Background and purpose: The aim of this study was to investigate the relevance of compartmentalized grey matter (GM) pathology and network reorganization in multiple sclerosis (MS) patients with concomitant epilepsy. Methods: From 3-T magnetic resonance imaging scans of 30 MS patients with epilepsy (MSE group; age 41 ± 15 years, 21 females, disease duration 8 ± 6 years, median Expanded Disability Status Scale [EDSS] score 3), 60 MS patients without epilepsy (MS group; age 41 ± 12 years, 35 females, disease duration 6 ± 4 years, EDSS score 2), and 60 healthy subjects (HS group; age 40 ± 13 years, 27 females) the regional volumes of GM lesions and of cortical, subcortical and hippocampal structures were quantified. Network topology and vulnerability were modelled within the graph theoretical framework. Receiver-operating characteristic (ROC) curve analysis was applied to assess the accuracy of GM pathology measures to discriminate between MSE and MS patients. Results: Higher lesion volumes within the hippocampus, mesiotemporal cortex and amygdala were detected in the MSE compared to the MS group (all p < 0.05). The MSE group had lower cortical volumes mainly in temporal and parietal areas compared to the MS and HS groups (all p < 0.05). Lower hippocampal tail and presubiculum volumes were identified in both the MSE and MS groups compared to the HS group (all p < 0.05). Network topology in the MSE group was characterized by higher transitivity and assortativity, and higher vulnerability compared to the MS and HS groups (all p < 0.05). Hippocampal lesion volume yielded the highest accuracy (area under the ROC curve 0.80 [0.67–0.91]) in discriminating between MSE and MS patients. Conclusions: High lesion load, altered integrity of mesiotemporal GM structures, and network reorganization are associated with a greater propensity for epilepsy occurrence in people with MS.
Is APOE ε4 associated with cognitive performance in early MS? ()
Objective To assess the impact of APOE polymorphisms on cognitive performance in patients newly diagnosed with clinically isolated syndrome (CIS) or relapsing-remitting MS (RRMS). Methods This multicenter cohort study included 552 untreated patients recently diagnosed with CIS or RRMS according to the 2005 revised McDonald criteria. The single nucleotide polymorphisms rs429358 (ε4) and rs7412 (ε2) of the APOE haplotype were assessed by allelic discrimination assays. Cognitive performance was evaluated using the 3-second paced auditory serial addition test and the Multiple Sclerosis Inventory Cognition (MUSIC). Sum scores were calculated to approximate the overall cognitive performance and memory-centered cognitive functions. The impact of the APOE carrier status on cognitive performance was assessed using multiple linear regression models, also including demographic, clinical, MRI, and lifestyle factors. Results APOE ε4 homozygosity was associated with lower overall cognitive performance, whereas no relevant association was observed for APOE ε4 heterozygosity or APOE ε2 carrier status. Furthermore, higher disability levels, MRI lesion load, and depressive symptoms were associated with lower cognitive performance. Patients consuming alcohol had higher test scores than patients not consuming alcohol. Female sex, lower disability, and alcohol consumption were associated with better performance in the memory-centered subtests of MUSIC, whereas no relevant association was observed for APOE carrier status. Conclusion Along with parameters of a higher disease burden, APOE ε4 homozygosity was identified as a potential predictor of cognitive performance in this large cohort of patients with CIS and early RRMS.
Continuous reorganization of cortical information flow in multiple sclerosis: a longitudinal fMRI effective connectivity study ()
Effective connectivity (EC) is able to explore causal effects between brain areas and can depict mechanisms that underlie repair and adaptation in chronic brain diseases. Thus, the application of EC techniques in multiple sclerosis (MS) has the potential to determine directionality of neuronal interactions and may provide an imaging biomarker for disease progression. Here, serial longitudinal structural and resting-state fMRI was performed at 12-week intervals over one year in twelve MS patients. Twelve healthy subjects served as controls (HC). Two approaches for EC quantification were used: Causal Bayesian Network (CBN) and Time-resolved Partial Directed Coherence (TPDC). The EC strength was correlated with the Expanded Disability Status Scale (EDSS) and Fatigue Scale for Motor and Cognitive functions (FSMC). Our findings demonstrated a longitudinal increase in EC between specific brain regions, detected in both the CBN and TPDC analysis in MS patients. In particular, EC from the deep grey matter, frontal, prefrontal and temporal regions showed a continuous increase over the study period. No longitudinal changes in EC were attested in HC during the study. Furthermore, we observed an association between clinical performance and EC strength. In particular, the EC increase in fronto-cerebellar connections showed an inverse correlation with the EDSS and FSMC. Our data depict continuous functional reorganization between specific brain regions indicated by increasing EC over time in MS, which is not detectable in HC. In particular, fronto-cerebellar connections, which were closely related to clinical performance, may provide a marker of brain plasticity and functional reserve in MS.
Intrathecal B-cell accumulation and axonal damage distinguish MRI-based benign from aggressive onset in MS ()
Objective We explored the incremental value of adding multiple disease activity biomarkers in CSF and serum for distinguishing MRI-based benign from aggressive MS in early disease course. Methods Ninety-three patients diagnosed with clinically isolated syndrome (CIS) or early MS were divided into 3 nonoverlapping severity groups defined by objective MRI criteria. Ninety-seven patients with noninflammatory neurologic disorders and 48 patients with other inflammatory neurologic diseases served as controls. Leukocyte subsets in the CSF were analyzed by flow cytometry. CSF neurofilament light chain (NfL) and chitinase-3-like protein 1 (CHI3L1) levels were measured by ELISA. Serum NfL levels were examined using single molecule array technology. Results CSF CD20+/CD14+ ratios and NfL levels in CSF and serum were significantly different between high and low MRI severity groups, whereas no difference was found for CSF CHI3L1 levels. NfL levels in CSF and serum highly correlated. Receiver operating characteristic analysis demonstrated that the cumulative sums combining CSF CD20+/CD14+ ratios and NfL levels in serum or CSF considerably improved diagnostic accuracy. A composite score built from these 2 cumulative sums best distinguished MRI severity. These findings were validated by support vector machine analysis, which confirmed that the accuracy of the cumulative sums and composite score outperforms single biomarkers. Conclusion Patients with extreme manifestations of CIS or early MS defined by strict MRI parameters can be best distinguished by combining markers of intrathecal B-cell accumulation and axonal damage. This could stratify individual treatment decisions toward a more personalized immunotherapy.
Selective brain network and cellular responses upon dimethyl fumarate immunomodulation in multiple sclerosis ()
Background Efficient personalized therapy paradigms are needed to modify the disease course and halt gray (GM) and white matter (WM) damage in patients with multiple sclerosis (MS). Presently, promising disease-modifying drugs show impressive efficiency, however, tailored markers of therapy responses are required. Here, we aimed to detect in a real-world setting patients with a more favorable brain network response and immune cell dynamics upon dimethyl fumarate (DMF) treatment. Methods In a cohort of 78 MS patients we identified two thoroughly matched groups, based on age, disease duration, disability status and lesion volume, receiving DMF (n = 42) and NAT (n = 36) and followed them over 16 months. The rate of cortical atrophy and deep GM volumes were quantified. GM and WM network responses were characterized by brain modularization as a marker of regional and global structural alterations. In the DMF group, lymphocyte subsets were analyzed by flow cytometry and related to clinical and MRI parameters. Results Sixty percent (25 patients) of the DMF and 36% (13 patients) of the NAT group had disease activity during the study period. The rate of cortical atrophy was higher in the DMF group (−2.4%) compared to NAT (−2.1%, p < 0.05) group. GM and WM network dynamics presented increased modularization in both groups. When dividing the DMF-treated cohort into patients free of disease activity (n = 17, DMFR) and patients with disease activity (n = 25, DMFNR) these groups differed significantly in CD8+ cell depletion counts (DMFR: 197.7 ± 97.1/μl; DMFNR: 298.4 ± 190.6/μl, p = 0.03) and also in cortical atrophy (DMFR: −1.7%; DMFNR: −3.2%, p = 0.01). DMFR presented reduced longitudinal GM and WM modularization and less atrophy as markers of preserved structural global network integrity in comparison to DMFNR and even NAT patients. Conclusions NAT treatment contributes to a reduced rate of cortical atrophy compared to DMF therapy. However, patients under DMF treatment with a stronger CD8+ T cell depletion present a more favorable response in terms of cortical integrity and GM and WM network responses. Our findings may serve as basis for the development of personalized treatment paradigms.
Increased cerebrospinal fluid albumin and immunoglobulin a fractions forecast cortical atrophy and longitudinal functional deterioration in relapsing-remitting multiple sclerosis ()
Background Currently, no unequivocal predictors of disease evolution exist in patients with multiple sclerosis (MS). Cortical atrophy measurements are, however, closely associated with cumulative disability. Objective Here, we aim to forecast longitudinal magnetic resonance imaging (MRI)-driven cortical atrophy and clinical disability from cerebrospinal fluid (CSF) markers. Methods We analyzed CSF fractions of albumin and immunoglobulins (Ig) A, G, and M and their CSF to serum quotients. Results Widespread atrophy was highly associated with increased baseline CSF concentrations and quotients of albumin and IgA. Patients with increased CSFIgA and CSFIgM showed higher functional disability at follow-up. Conclusion CSF markers of blood–brain barrier integrity and specific immune response forecast emerging gray matter pathology and disease progression in MS.
Structural brain network characteristics can differentiate CIS from early RRMS ()
Focal demyelinated lesions, diffuse white matter (WM) damage, and gray matter (GM) atrophy influence directly the disease progression in patients with multiple sclerosis. The aim of this study was to identify specific characteristics of GM and WM structural networks in subjects with clinically isolated syndrome (CIS) in comparison to patients with early relapsing-remitting multiple sclerosis (RRMS). Twenty patients with CIS, 33 with RRMS, and 40 healthy subjects were investigated using 3 T-MRI. Diffusion tensor imaging was applied, together with probabilistic tractography and fractional anisotropy (FA) maps for WM and cortical thickness correlation analysis for GM, to determine the structural connectivity patterns. A network topology analysis with the aid of graph theoretical approaches was used to characterize the network at different community levels (modularity, clustering coefficient, global, and local efficiencies). Finally, we applied support vector machines (SVM) to automatically discriminate the two groups. In comparison to CIS subjects, patients with RRMS were found to have increased modular connectivity and higher local clustering, highlighting increased local processing in both GM and WM. Both groups presented increased modularity and clustering coefficients in comparison to healthy controls. SVM algorithms achieved 97% accuracy using the clustering coefficient as classifier derived from GM and 65% using WM from probabilistic tractography and 67% from modularity of FA maps to differentiate between CIS and RRMS patients. We demonstrate a clear increase of modular and local connectivity in patients with early RRMS in comparison to CIS and healthy subjects. Based only on a single anatomic scan and without a priori information, we developed an automated and investigator-independent paradigm that can accurately discriminate between patients with these clinically similar disease entities, and could thus complement the current dissemination-in-time criteria for clinical diagnosis.
Network alterations underlying anxiety symptoms in early multiple sclerosis ()
Background: Anxiety, often seen as comorbidity in multiple sclerosis (MS), is a frequent neuropsychiatric symptom and essentially afects the overall disease burden. Here, we aimed to decipher anxiety-related networks functionally connected to atrophied areas in patients sufering from MS. Methods: Using 3-T MRI, anxiety-related atrophy maps were generated by correlating longitudinal cortical thinning with the severity of anxiety symptoms in MS patients. To determine brain regions functionally connected to these maps, we applied a technique termed “atrophy network mapping”. Thereby, the anxiety-related atrophy maps were projected onto a large normative connectome (n=1000) performing seed‐based functional connectivity. Finally, an instructed threat paradigm was conducted with regard to neural excitability and efective connectivity, using transcranial magnetic stimulation combined with high-density electroencephalography. Results: Thinning of the left dorsal prefrontal cortex was the only region that was associated with higher anxiety levels. Atrophy network mapping identifed functional involvement of bilateral prefrontal cortex as well as amygdala and hippocampus. Structural equation modeling confrmed that the volumes of these brain regions were signifcant determinants that infuence anxiety symptoms in MS. We additionally identifed reduced information fow between the prefrontal cortex and the amygdala at rest, and pathologically increased excitability in the prefrontal cortex in MS patients as compared to controls. Conclusion: Anxiety-related prefrontal cortical atrophy in MS leads to a specifc network alteration involving structures that resemble known neurobiological anxiety circuits. These fndings elucidate the emergence of anxiety as part of the disease pathology and might ultimately enable targeted treatment approaches modulating brain networks in MS. Keywords: Multiple sclerosis, Anxiety, Atrophy, Functional connectivity, Excitability
Clinical characteristics of late and early onset neuromyelitis optica spectrum disorders [Abstract] ()
  • 1 to 20

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks