Refine
Document Type
- Article (21)
Keywords
- Neurology (8)
- Neurology (clinical) (6)
- Clinical Neurology (4)
- Pharmacology (3)
- Psychiatry and Mental health (3)
- Surgery (2)
- Anesthesiology and Pain Medicine (1)
- General Medicine (1)
- Multidisciplinary (1)
- Pharmacology (medical) (1)
BackgroundObesity reportedly increases the risk for developing multiple sclerosis (MS), but little is known about its association with disability accumulation.MethodsThis nationwide longitudinal cohort study included 1066 individuals with newly diagnosed MS from the German National MS cohort. Expanded Disability Status Scale (EDSS) scores, relapse rates, MRI findings and choice of immunotherapy were compared at baseline and at years 2, 4 and 6 between obese (body mass index, BMI ≥30 kg/m2) and non-obese (BMI <30 kg/m2) patients and correlated with individual BMI values.ResultsPresence of obesity at disease onset was associated with higher disability at baseline and at 2, 4 and 6 years of follow-up (p<0.001). Median time to reach EDSS 3 was 0.99 years for patients with BMI ≥30 kg/m2 and 1.46 years for non-obese patients. Risk to reach EDSS 3 over 6 years was significantly increased in patients with BMI ≥30 kg/m2 compared with patients with BMI <30 kg/m2 after adjustment for sex, age, smoking (HR 1.87; 95% CI 1.3 to 2.6; log-rank test p<0.001) and independent of disease-modifying therapies. Obesity was not significantly associated with higher relapse rates, increased number of contrast-enhancing MRI lesions or higher MRI T2 lesion burden over 6 years of follow-up.ConclusionsObesity in newly diagnosed patients with MS is associated with higher disease severity and poorer outcome. Obesity management could improve clinical outcome of MS.
Background: Depression has a major impact on the disease burden of multiple sclerosis (MS). Analyses of overlapping MS and depression risk factors [smoking, vitamin D (25-OH-VD) and Epstein-Barr virus (EBV) infection] and sex, age, disease characteristics and neuroimaging features associated with depressive symptoms in early MS are scarce.
Objectives: To assess an association of MS risk factors with depressive symptoms within the German NationMS cohort.
Design: Cross-sectional analysis within a multicenter observational study.
Methods: Baseline data of n = 781 adults with newly diagnosed clinically isolated syndrome or relapsing-remitting MS qualified for analysis. Global and region-specific magnetic resonance imaging (MRI)-volumetry parameters were available for n = 327 patients. Association of demographic factors, MS characteristics and risk factors [sex, age, smoking, disease course, presence of current relapse, expanded disability status scale (EDSS) score, fatigue (fatigue scale motor cognition), 25-OH-VD serum concentration, EBV nuclear antigen-1 IgG (EBNA1-IgG) serum levels] and depressive symptoms (Beck Depression Inventory-II, BDI-II) was tested as a primary outcome by multivariable linear regression. Non-parametric correlation and group comparison were performed for associations of MRI parameters and depressive symptoms.
Results: Mean age was 34.3 years (95% confidence interval: 33.6-35.0). The female-to-male ratio was 2.3:1. At least minimal depressive symptoms (BDI-II > 8) were present in n = 256 (32.8%), 25-OH-VD deficiency (<20 ng/ml) in n = 398 (51.0%), n = 246 (31.5%) participants were smokers. Presence of current relapse [coefficient (c) = 1.48, p = 0.016], more severe fatigue (c = 0.26, p < 0.0001), lower 25-OH-VD (c = -0.03, p = 0.034) and smoking (c = 0.35, p = 0.008) were associated with higher BDI-II scores. Sex, age, disease course, EDSS, month of visit, EBNA1-IgG levels and brain volumes at baseline were not.
Conclusion: Depressive symptoms need to be assessed in early MS. Patients during relapse seem especially vulnerable to depressive symptoms. Contributing factors such as fatigue, vitamin D deficiency and smoking, could specifically be targeted in future interventions and should be investigated in prospective studies.
Background and purpose
Brain pseudoatrophy has been shown to play a pivotal role in the interpretation of brain atrophy measures during the first year of disease-modifying therapy in multiple sclerosis. Whether pseudoatrophy also affects the spinal cord remains unclear. The aim of this study was to analyze the extent of pseudoatrophy in the upper spinal cord during the first 2 years after therapy initiation and compare this to the brain.
Methods
A total of 129 patients from a prospective longitudinal multicentric national cohort study for whom magnetic resonance imaging scans at baseline, 12 months, and 24 months were available were selected for brain and spinal cord volume quantification. Annual percentage brain volume and cord area change were calculated using SIENA (Structural Image Evaluation of Normalized Atrophy) and NeuroQLab, respectively. Linear mixed model analyses were performed to compare patients on interferon-beta therapy (n = 84) and untreated patients (n = 45).
Results
Patients treated with interferon-beta demonstrated accelerated annual percentage brain volume and cervical cord area change in the first year after treatment initiation, whereas atrophy rates stabilized to a similar and not significantly different level compared to untreated patients during the second year.
Conclusions
These results suggest that pseudoatrophy occurs not only in the brain, but also in the spinal cord during the first year of interferon-beta treatment.
Objective
To assess the impact of APOE polymorphisms on cognitive performance in patients newly diagnosed with clinically isolated syndrome (CIS) or relapsing-remitting MS (RRMS).
Methods
This multicenter cohort study included 552 untreated patients recently diagnosed with CIS or RRMS according to the 2005 revised McDonald criteria. The single nucleotide polymorphisms rs429358 (ε4) and rs7412 (ε2) of the APOE haplotype were assessed by allelic discrimination assays. Cognitive performance was evaluated using the 3-second paced auditory serial addition test and the Multiple Sclerosis Inventory Cognition (MUSIC). Sum scores were calculated to approximate the overall cognitive performance and memory-centered cognitive functions. The impact of the APOE carrier status on cognitive performance was assessed using multiple linear regression models, also including demographic, clinical, MRI, and lifestyle factors.
Results
APOE ε4 homozygosity was associated with lower overall cognitive performance, whereas no relevant association was observed for APOE ε4 heterozygosity or APOE ε2 carrier status. Furthermore, higher disability levels, MRI lesion load, and depressive symptoms were associated with lower cognitive performance. Patients consuming alcohol had higher test scores than patients not consuming alcohol. Female sex, lower disability, and alcohol consumption were associated with better performance in the memory-centered subtests of MUSIC, whereas no relevant association was observed for APOE carrier status.
Conclusion
Along with parameters of a higher disease burden, APOE ε4 homozygosity was identified as a potential predictor of cognitive performance in this large cohort of patients with CIS and early RRMS.
Objective
We applied longitudinal 3T MRI and advanced computational models in 2 independent cohorts of patients with early MS to investigate how white matter (WM) lesion distribution and cortical atrophy topographically interrelate and affect functional disability.
Methods
Clinical disability was measured using the Expanded Disability Status Scale Score at baseline and at 1-year follow-up in a cohort of 119 patients with early relapsing-remitting MS and in a replication cohort of 81 patients. Covarying patterns of cortical atrophy and baseline lesion distribution were extracted by parallel independent component analysis. Predictive power of covarying patterns for disability progression was tested by receiver operating characteristic analysis at the group level and support vector machine for individual patient outcome.
Results
In the study cohort, we identified 3 distinct distribution types of WM lesions (cerebellar, bihemispheric, and left lateralized) that were associated with characteristic cortical atrophy distributions. The cerebellar and left-lateralized patterns were reproducibly detected in the second cohort. Each of the patterns predicted to different extents, short-term disability progression, whereas the cerebellar pattern was associated with the highest risk of clinical worsening, predicting individual disability progression with an accuracy of 88% (study cohort) and 89% (replication cohort), respectively.
Conclusion
These findings highlight the role of distinct spatial distribution of cortical atrophy and WM lesions predicting disability. The cerebellar involvement is shown as a key determinant of rapid clinical deterioration.