Refine
Year of publication
Document Type
- Article (19)
- Doctoral Thesis (1)
Language
- English (20)
Keywords
- General Physics and Astronomy (4)
- Condensed Matter Physics (3)
- Electronic, Optical and Magnetic Materials (3)
- Multiferroikum (2)
- Antiferromagnetismus (1)
- Dielektrische Eigenschaft (1)
- Elektrische Eigenschaft (1)
- Ferroelektrikum (1)
- General Biochemistry, Genetics and Molecular Biology (1)
- General Chemistry (1)
Orbital-order driven ferroelectricity and dipolar relaxation dynamics in multiferroic GaMo4S8
(2018)
In the present work, we provide results from specific heat, magnetic susceptibility, dielectric constant, ac conductivity, and electrical polarization measurements performed on the lacunar spinel GaV4Se8. With decreasing temperature, we observe a transition from the paraelectric and paramagnetic cubic state into a polar, probably ferroelectric state at 42 K followed by magnetic ordering at 18 K. The polar transition is likely driven by the Jahn-Teller effect due to the degeneracy of the V4 cluster orbitals. The excess polarization arising in the magnetic phase indicates considerable magnetoelectric coupling. Overall, the behavior of GaV4Se8 in many respects is similar to that of the skyrmion host GaV4S8, exhibiting a complex interplay of orbital, spin, lattice, and polar degrees of freedom. However, its dielectric behavior at the polar transition markedly differs from that of the Jahn-Teller-driven ferroelectric GeV4S8, which can be ascribed to the dissimilar electronic structure of the Ge compound.
Stability of Néel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8
(2020)
Nanometer-scale magnetization configurations known as magnetic skyrmions have mostly been studied in cubic chiral helimagnets, in which they are Bloch-type and their axes align along the applied magnetic field. In contrast, the orientation of Néel-type skyrmions is locked to the polar axis of the host material's underlying crystal structure. In the lacunar spinels GaV4S8 and GaV4Se8, the Néel-type skyrmion lattice phase exists for externally applied magnetic fields parallel to this axis and withstands oblique magnetic fields up to some critical angle. Here, we map out the stability of the skyrmion lattice phase in both crystals as a function of field angle and magnitude using dynamic cantilever magnetometry. The measured phase diagrams reproduce the major features predicted by a recent theoretical model, including a reentrant cycloidal phase in GaV4Se8. Nonetheless, we observe a greater robustness of the skyrmion phase to oblique fields, suggesting possible refinements to the model. Besides identifying transitions between the cycloidal, skyrmion lattice, and ferromagnetic states in the bulk, we measure additional anomalies in GaV4Se8 and assign them to magnetic states confined to polar structural domain walls.
H3LiIr2O6 is the first honeycomb-lattice system without any signs of long-range magnetic order down to the lowest temperatures, raising the hope for the realization of an ideal Kitaev quantum spin liquid. Its honeycomb layers are coupled by interlayer hydrogen bonds. Static or dynamic disorder of these hydrogen bonds was proposed to strongly affect the magnetic exchange and to make Kitaev-type interactions dominant. Using dielectric spectroscopy, here we provide experimental evidence for dipolar relaxations in H3LiIr2O6 and deuterated D3LiIr2O6, which mirror the dynamics of protons and deuterons within the double-well potentials of the hydrogen bonds. The detected hydrogen dynamics reveals glassy freezing, characterized by a strong slowing down under cooling, with a crossover from thermally activated hopping to quantum-mechanical tunneling towards low temperatures. Thus, besides being Kitaev quantum-spin-liquid candidates, these materials also are quantum paraelectrics. However, the small relaxation rates in the mHz range, found at low temperatures, practically realize quasistatic hydrogen disorder, as assumed in recent theoretical works to explain the quantum-spin-liquid ground state of both compounds.
Quantifying domain population in multiferroics is required to understand domain nucleation/switching processes and achieve on-demand domain control. We report an approach based on nuclear magnetic resonance spectroscopy for the accurate measurement of volume fractions of multiferroic domains in bulk crystals. We demonstrate on a benchmarking system, GaV4Se8, that the electric quadrupole interaction of the 71Ga and the hyperfine field at the 51V nuclei are proper microscopic probes of the ferroelectric polarization and the ferromagnetic moment, respectively. We use the anisotropy of these local quantities to determine the multiferroic domain population, controlled here by both electric and magnetic fields. The sensitivity of this local-probe technique to site symmetries facilitates domain quantification in a wide range of anisotropic magnets, ferroelectrics, and multiferroics.
The lacunar-spinel chalcogenides exhibit magnetic centers in the form of transition-metal tetrahedra. On the basis of density-functional computations, the electronic ground state of an Mo413+ tetrahedron has been postulated as single-configuration a12 e4 t25, where a1, e, and t2 are symmetry-adapted linear combinations of single-site Mo t2g atomic orbitals. Here we unveil the many-body tetramer wave-function: we show that sizable correlations yield a weight of only 62% for the a12 e4 t25 configuration. While spin–orbit coupling within the peculiar valence orbital manifold is still effective, the expectation value of the spin–orbit operator and the g factors deviate from figures describing nominal t5 jeff = 1/2 moments. As such, our data documents the dressing of a spin–orbit jeff = 1/2 object with intra-tetramer excitations. Our results on the internal degrees of freedom of these magnetic moments provide a solid theoretical starting point in addressing the intriguing phase transitions observed at low temperatures in these materials.
Distinguishing different antiferromagnetic domains by electrical probes is a challenging task, which in itinerant compounds can be achieved, e.g., via the anisotropic magnetoresistance. Here, we demonstrate that in insulators, the anisotropic magnetocapacitance can be exploited for the same purpose. We studied the magnetic field dependence of the dielectric response in BiFeO3, one of the few room-temperature multiferroics. We observed a sizeable dielectric anisotropy upon the rotation of the modulation vector of the antiferromagnetic cycloid in the plane normal to the rhombohedral axis. Importantly, this anisotropy is characteristic of the cycloidal mono-domain state even in zero magnetic field, thus facilitating the determination of the antiferromagnetic domain population. This approach can be utilized to electrically distinguish between antiferromagnetic domains even in complex magnets, such as modulated spin structures, via the magnetodielectric coupling.
Ferro-/ferri- and antiferromagnetically ordered phases are typically exclusive in nature, thus, their coexistence in atomic-scale proximity is expected only in heterostructures. Breaking this paradigm and broadening the range of unconventional magnetic states, we report here on the observation of a new, atomic-scale hybrid spin state. This ordering is stabilized in three-dimensional crystals of the polar antiferromagnet Co2Mo3O8 by magnetic fields applied perpendicular to the Co honeycomb layers and possesses a spontaneous in-plane ferromagnetic moment. Our microscopic spin model, capturing the observed field dependence of the longitudinal and transverse magnetization as well as the magnetoelectric/elastic properties, reveals that this novel spin state is composed of an alternating stacking of antiferromagnetic and ferrimagnetic honeycomb layers. The strong intralayer and the weak interlayer exchange couplings together with competing anisotropies at octahedral and tetrahedral Co sites are identified as the key ingredients to stabilize antiferromagnetic and ferrimagnetic layers in such close proximity. We show that the proper balance of magnetic interactions can extend the stability range of this hybrid phase down to zero magnetic field. The possibility to realize a layer-by-layer stacking of such distinct spin orders via suitable combinations of microscopic interactions opens a new dimension toward the nanoscale engineering of magnetic states.