• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help

Refine

Has Fulltext

  • no (29)
  • yes (2)

Author

  • Amann, Manuel (31)
  • Kennard, Lee (4)
  • Kollross, Andreas (2)
  • Zoller, Leopold (2)
  • Dessai, Anand (1)
  • González-Álvaro, David (1)
  • Kapovitch, Vitali (1)
  • Lange, Christian (1)
  • Radeschi, Marco (1)
  • Taimanov, Iskander A. (1)
+ more

Year of publication

  • 2025 (1)
  • 2024 (1)
  • 2023 (1)
  • 2022 (1)
  • 2021 (2)
  • 2020 (2)
  • 2019 (4)
  • 2017 (3)
  • 2016 (1)
  • 2015 (5)
+ more

Document Type

  • Article (19)
  • Preprint (9)
  • Book (3)

Language

  • English (31)

Keywords

  • General Mathematics (6)
  • Applied Mathematics (3)
  • Algebra and Number Theory (1)
  • Geometry and Topology (1)

Institute

  • Institut für Mathematik (31)
  • Lehrstuhl für Differentialgeometrie (31)
  • Mathematisch-Naturwissenschaftlich-Technische Fakultät (31)

31 search hits

  • 1 to 20
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Positive curvature and symmetry in small dimensions ()
The Â-genus of S1-manifolds with finite second homotopy group ()
Positive Quaternion Kähler Manifolds with fourth Betti number equal to one ()
Partial classification results for Positive Quaternion Kähler Manifolds ()
On fibrations with formal elliptic fibers ()
Non-formal homogeneous spaces ()
Degrees of self-maps of simply connected manifolds ()
Positive curvature and rational ellipticity ()
Geometrically formal homogeneous metrics of positive curvature ()
On a generalized conjecture of Hopf with symmetry ()
A note on the Hilali conjecture ()
Modelling geometry in algebra – curvature, holonomy, actions ()
Positive Quaternion Kähler Manifolds ()
Positiv Quaternional Kähler (PQK) Mannigfaltigkeiten sind Riemannsche Mannigfaltigkeiten mit einer in Sp(n)Sp(1) enthaltenen Holonomiegruppe und mit positiver Skalarkrümmung. Gemäß der LeBrun-Salamon Vermutung ist jede solche Mannigfaltigkeit ein symmetrischer Raum. In der vorliegenden Dissertation wird diese Vermutung aus unterschiedlichsten Gesichtspunkten beleuchtet: So werden u.a. Methoden der (äquivarianten) Index-, Lie- und Kohomologietheorie angewandt, um zahlreiche Teilklassifikationsergebnisse zu erhalten. Weiter wurde erkannt, dass die bestehende Klassifikation in Dimension 12 von Herrera und Herrera fehlerhaft ist und so nicht aufrechterhalten werden kann. Ein neuer Zugang mittels Rationaler Homotopietheorie erlaubt z.B. zu schließen, dass PQK Mannigfaltigkeiten formale Räume sind. Dies folgt aus einer tiefgehenden Analyse sphärischer Faserungen. Im Rahmen dieser Untersuchung werden insbesondere auch Konstruktionsprinzipien für nicht-formale homogene Räume bereitgestellt.
The homology of a double mapping cylinder ()
Homology versus homotopy in fibrations and in limits ()
Motivated by prominent problems like the Hilali conjecture Yamaguchi--Yokura recently proposed certain estimates on the relations of the dimensions of rational homotopy and rational cohomology groups of fibre, base and total spaces in a fibration of rationally elliptic spaces. In this article we prove these estimates in the category of formal elliptic spaces and, in general, whenever the total space in addition has positive Euler characteristic or has the rational homotopy type of a homogeneous manifold (respectively of a known example) of positive sectional curvature. Additionally, we provide general estimates approximating the conjectured ones. Moreover, we suggest to study families of rationally elliptic spaces under certain asymptotics, and we discuss the conjectured estimates from this perspective for two-stage spaces.
The Toral Rank Conjecture and variants of equivariant formality ()
An action of a compact Lie group is called equivariantly formal, if the Leray--Serre spectral sequence of its Borel fibration degenerates at the E_2-term. This term is as prominent as it is restrictive. In this article, also motivated by the lack of junction between the notion of equivariant formality and the concept of formality of spaces (surging from rational homotopy theory) we suggest two new variations of equivariant formality: "MOD-formal actions" and "actions of formal core". We investigate and characterize these new terms in many different ways involving various tools from rational homotopy theory, Hirsch--Brown models, A∞-algebras, etc., and, in particular, we provide different applications ranging from actions on symplectic manifolds and rationally elliptic spaces to manifolds of non-negative sectional curvature. A major motivation for the new definitions was that an almost free action of a torus Tn↷X possessing any of the two new properties satisfies the toral rank conjecture, i.e. dimH∗(X;Q)≥2n. This generalizes and proves the toral rank conjecture for actions with formal orbit spaces.
Vector bundles of non-negative curvature over cohomogeneity one manifolds ()
We provide several results on the existence of metrics of non-negative sectional curvature on vector bundles over certain cohomogeneity one manifolds and homogeneous spaces up to suitable stabilization. Beside explicit constructions of the metrics, this is achieved by identifying equivariant structures upon these vector bundles via a comparison of their equivariant and non-equivariant K-theory. For this, in particular, we transcribe equivariant K-theory to equivariant rational cohomology and investigate surjectivity properties of induced maps in the Borel fibration via rational homotopy theory.
On the equivariant cohomology of cohomogeneity one Alexandrov spaces ()
We give a characterization of those Alexandrov spaces admitting a cohomogeneity one action of a compact connected Lie group G for which the action is Cohen-Macaulay. This generalizes a similar result for manifolds to the singular setting of Alexandrov spaces where, in contrast to the manifold case, we find several actions which are not Cohen-Macaulay. In fact, we present results in a slightly more general context. We extend the methods in this field by a conceptual approach on equivariant cohomology via rational homotopy theory using an explicit rational model for a double mapping cylinder.
Odd-dimensional orbifolds with all geodesics closed are covered by manifolds ()
Manifolds all of whose geodesics are closed have been studied a lot, but there are only few examples known. The situation is different if one allows in addition for orbifold singularities. We show, nevertheless, that the abundance of new examples is restricted to even dimensions. As one key ingredient we provide a characterization of orientable manifolds among orientable orbifolds in terms of characteristic classes.
  • 1 to 20

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks