• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help

Refine

Has Fulltext

  • no (7)
  • yes (4)

Author

  • Smirnov, Maxim (9)
  • Mellit, Anton (3)
  • Perrin, Nicolas (3)
  • Belmans, Pieter (2)
  • Kuznetsov, Alexander (2)
  • Manin, Yuri I. (2)
  • Smirnov, Maxim N. (2)
  • Benedetti, Vladimiro (1)
  • Cruz Morales, John Alexander (1)
  • Faenzi, Daniele (1)
+ more

Year of publication

  • 2025 (2)
  • 2023 (2)
  • 2021 (1)
  • 2019 (1)
  • 2015 (3)
  • 2014 (1)
  • 2013 (1)

Document Type

  • Article (10)
  • Preprint (1)

Language

  • English (11)

Keywords

  • General Mathematics (3)
  • Algebra and Number Theory (1)
  • Geometry and Topology (1)

Institute

  • Institut für Mathematik (11)
  • Lehrstuhl für Algebra und Zahlentheorie (11)
  • Mathematisch-Naturwissenschaftlich-Technische Fakultät (11)

11 search hits

  • 1 to 11
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
On quantum cohomology of Grassmannians of isotropic lines, unfoldings of An-singularities, and Lefschetz exceptional collections (2019)
Cruz Morales, John Alexander ; Mellit, Anton ; Perrin, Nicolas ; Smirnov, Maxim
Residual categories for (co)adjoint Grassmannians in classical types (2021)
Kuznetsov, Alexander ; Smirnov, Maxim
Update on quantum cohomology of IG(2,2n) (2015)
Mellit, Anton ; Perrin, Nicolas ; Smirnov, Maxim
Dubrovin's conjecture for IG(2, 6) (2015)
Galkin, Sergey ; Mellit, Anton ; Smirnov, Maxim
Some remarks on Landau-Ginzburg potentials for odd-dimensional quadrics (2015)
Gorbounov, Vassily ; Smirnov, Maxim
On the derived category of M̄0,n (2013)
Manin, Yuri I. ; Smirnov, Maxim
Towards motivic quantum cohomology of M̄0,S (2014)
Manin, Yuri I. ; Smirnov, Maxim
Derived categories of the Cayley Plane and the coadjoint Grassmannian of type F (2023)
Belmans, Pieter ; Kuznetsov, Alexander ; Smirnov, Maxim
Hochschild cohomology of generalised Grassmannians (2023)
Belmans, Pieter ; Smirnov, Maxim
We compute the Hochschild–Kostant–Rosenberg decomposition of the Hochschild cohomology of generalised Grassmannians, i.e., partial flag varieties associated to maximal parabolic subgroups in a simple algebraic group, in terms of representation-theoretic data.We explain how the decomposition is concentrated in global sections for the (co)minuscule and (co)adjoint generalised Grassmannians, and conjecture that for (almost) all other cases the same vanishing of the higher cohomology does not hold. Our methods give an explicit partial description of the Gerstenhaber algebra structure for the Hochschild cohomology of cominuscule and adjoint generalised Grassmannians. We also consider the case of adjoint partial flag varieties in type A, which are associated to certain submaximal parabolic subgroups.
Derived category of the spinor 15-fold (2025)
Benedetti, Vladimiro ; Faenzi, Daniele ; Smirnov, Maxim N.
We construct a full exceptional Lefschetz collection on the spinor 15-fold consisting of a connected component of the space of orthogonal 6-dimensional subspaces of a 12-dimensional complex vector space, isotropic with respect to a fixed non-degenerate quadratic form. The collection is made of 2 twists of a 4-item block and 8 twists of a 3-item block, confirming a conjecture of Kuznetsov and Smirnov. We speculate that a similar collection might work for the Freudenthal E7-variety.
On the big quantum cohomology of coadjoint varieties (2025)
Perrin, Nicolas ; Smirnov, Maxim N.
This paper is devoted to the study of the quantum cohomology of coadjoint varieties of simple algebraic groups across all Dynkin types. We determine the non-semisimple factors of the small quantum cohomology ring and relate them to ADE-singularities. Moreover, we show that the big quantum cohomology of a coadjoint variety is always generically semisimple even though in most cases the small quantum cohomology is not.
  • 1 to 11

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks