Refine
Year of publication
Document Type
- Article (23)
Keywords
- Cancer Research (8)
- Oncology (8)
- Clinical Neurology (2)
- Anesthesiology and Pain Medicine (1)
- Genetics (1)
- Hematology (1)
- Molecular Biology (1)
- Neurology (clinical) (1)
- Pathology and Forensic Medicine (1)
- Radiation (1)
Institute
- Medizinische Fakultät (20)
- Universitätsklinikum (20)
- Lehrstuhl für Kinder- und Jugendmedizin (18)
- Fakultät für Angewandte Informatik (3)
- Institut für Informatik (2)
- Lehrstuhl für Biomedizinische Informatik, Data Mining und Data Analytics (2)
- Professur für Experimentelle Pädiatrie (2)
- Institut für Geographie (1)
- Lehrstuhl für Diagnostische und Interventionelle Neuroradiologie (1)
- Lehrstuhl für Diagnostische und Interventionelle Radiologie (1)
Background
Neuroblastoma is the most common extracranial solid tumour in children. Relapsed or refractory neuroblastoma is associated with a poor outcome. We assessed the combination of irinotecan–temozolomide and dasatinib–rapamycin (RIST) in patients with relapsed or refractory neuroblastoma.
Methods
The multicentre, open-label, randomised, controlled, phase 2, RIST-rNB-2011 trial recruited from 40 paediatric oncology centres in Germany and Austria. Patients aged 1–25 years with high-risk relapsed (defined as recurrence of all stage IV and MYCN amplification stages, after response to treatment) or refractory (progressive disease during primary treatment) neuroblastoma, with Lansky and Karnofsky performance status at least 50%, were assigned (1:1) to RIST (RIST group) or irinotecan–temozolomide (control group) by block randomisation, stratified by MYCN status. We compared RIST (oral rapamycin [loading 3 mg/m2 on day 1, maintenance 1 mg/m2 on days 2–4] and oral dasatinib [2 mg/kg per day] for 4 days with 3 days off, followed by intravenous irinotecan [50 mg/m2 per day] and oral temozolomide [150 mg/m2 per day] for 5 days with 2 days off; one course each of rapamycin–dasatinib and irinotecan–temozolomide for four cycles over 8 weeks, then two courses of rapamycin–dasatinib followed by one course of irinotecan–temozolomide for 12 weeks) with irinotecan–temozolomide alone (with identical dosing as experimental group). The primary endpoint of progression-free survival was analysed in all eligible patients who received at least one course of therapy. The safety population consisted of all patients who received at least one course of therapy and had at least one post-baseline safety assessment. This trial is registered at ClinicalTrials.gov, NCT01467986, and is closed to accrual.
Findings
Between Aug 26, 2013, and Sept 21, 2020, 129 patients were randomly assigned to the RIST group (n=63) or control group (n=66). Median age was 5·4 years (IQR 3·7–8·1). 124 patients (78 [63%] male and 46 [37%] female) were included in the efficacy analysis. At a median follow-up of 72 months (IQR 31–88), the median progression-free survival was 11 months (95% CI 7–17) in the RIST group and 5 months (2–8) in the control group (hazard ratio 0·62, one-sided 90% CI 0·81; p=0·019). Median progression-free survival in patients with amplified MYCN (n=48) was 6 months (95% CI 4–24) in the RIST group versus 2 months (2–5) in the control group (HR 0·45 [95% CI 0·24-0·84], p=0·012); median progression-free survival in patients without amplified MYCN (n=76) was 14 months (95% CI 9–7) in the RIST group versus 8 months (4–15) in the control group (HR 0·84 [95% CI 0·51–1·38], p=0·49). The most common grade 3 or worse adverse events were neutropenia (54 [81%] of 67 patients given RIST vs 49 [82%] of 60 patients given control), thrombocytopenia (45 [67%] vs 41 [68%]), and anaemia (39 [58%] vs 38 [63%]). Nine serious treatment-related adverse events were reported (five patients given control and four patients given RIST). There were no treatment-related deaths in the control group and one in the RIST group (multiorgan failure).
Interpretation
RIST-rNB-2011 demonstrated that targeting of MYCN-amplified relapsed or refractory neuroblastoma with a pathway-directed metronomic combination of a multkinase inhibitor and an mTOR inhibitor can improve progression-free survival and overall survival. This exclusive efficacy in MYCN-amplified, relapsed neuroblastoma warrants further investigation in the first-line setting.
Funding
Deutsche Krebshilfe.
Distinct pathways for genetic and epigenetic predisposition in familial and bilateral Wilms tumor
(2025)
Background
Genetic predisposition is particularly common in children with the kidney cancer, Wilms tumor. In 10% of these children, this manifests as a family history of Wilms tumor or bilateral disease. The frequency and spectrum of underlying changes have not been systematically investigated.
Methods
We analyzed 129 children with suspected Wilms tumor predisposition, 20 familial cases, and 109 children with bilateral disease, enrolled over 30 years in the German SIOP93-01/GPOH and SIOP2001 studies. We used whole exome, whole genome, and targeted DNA sequencing, together with MLPA and targeted methylation assays on tumor, blood, and normal kidney to determine predisposing changes.
Results
Predisposing variants were identified in 117/129 children, comprising DNA variants (57%) and epigenetic changes (34%). Most children had predisposition variants in genes previously implicated in Wilms tumor: most prominently WT1 (n = 35) and less frequently TRIM28, REST, DIS3L2, CTR9, DICER1, CDC73, and NONO. Nine children carried germline mutations in cancer predisposition genes not considered Wilms tumor predisposition genes, such as CHEK2, CDKN2A, BLM, BRCA2, STK11, and FMN2.
Predisposition via epigenetic BWS-IC1 alterations occurred as early somatic events, reflected by partial (mosaic) loss of imprinting or loss of heterozygosity at the IGF2/H19 locus in normal kidney or blood. These patients rarely had a clinical diagnosis of Beckwith-Wiedemann syndrome (BWS).
Especially WT1-driven tumors follow a stereotypical pathway of germline WT1 mutations becoming homozygous in renal precursor lesions through 11p LOH, which concomitantly activates imprinted IGF2 expression, with subsequent WNT pathway activation leading to tumor growth. There is a high rate of multicentric tumors, which may have previously been missed in unilateral tumors. While Wilms tumor predisposition genes relied on somatic inactivation of the second allele, this was different for general cancer predisposition genes. The latter cases were often associated with additional oncogenic alterations, similar to tumors with epigenetic predisposition.
Conclusions
We identified two main mechanisms of Wilms tumor predisposition: either germline genetic alterations of Wilms tumor and, less frequently, general cancer genes; or postzygotic mosaic imprinting defects activating IGF2. These findings inform future genetic screening and risk assessment of affected children and lend support to liquid biopsy screening for enhanced therapeutic stratification.