• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help

Refine

Has Fulltext

  • no (4)
  • yes (2)

Author

  • Gerjets, Peter (6)
  • Kasneci, Enkelejda (6)
  • Sümer, Ömer (6)
  • Trautwein, Ulrich (6)
  • Goldberg, Patricia (4)
  • D'Mello, Sidney (2)
  • Stürmer, Kathleen (2)
  • Bozkir, Efe (1)
  • Bühler, Babette (1)
  • Göllner, Richard (1)
+ more

Year of publication

  • 2025 (1)
  • 2023 (1)
  • 2021 (1)
  • 2020 (2)
  • 2018 (1)

Document Type

  • Article (3)
  • Conference Proceeding (2)
  • Preprint (1)

Language

  • English (6)

Keywords

  • Developmental and Educational Psychology (1)

Institute

  • Fakultät für Angewandte Informatik (6)
  • Institut für Informatik (6)
  • Lehrstuhl für Menschzentrierte Künstliche Intelligenz (6)

6 search hits

  • 1 to 6
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
From the lab to the wild: examining generalizability of video-based mind wandering detection (2025)
Bühler, Babette ; Bozkir, Efe ; Goldberg, Patricia ; Sümer, Ömer ; D'Mello, Sidney ; Gerjets, Peter ; Trautwein, Ulrich ; Kasneci, Enkelejda
Student’s shift of attention away from a current learning task to task-unrelated thought, also called mind wandering, occurs about 30% of the time spent on education-related activities. Its frequent occurrence has a negative effect on learning outcomes across learning tasks. Automated detection of mind wandering might offer an opportunity to assess the attentional state continuously and non-intrusively over time and hence enable large-scale research on learning materials and responding to inattention with targeted interventions. To achieve this, an accessible detection approach that performs well for various systems and settings is required. In this work, we explore a new, generalizable approach to video-based mind wandering detection that can be transferred to naturalistic settings across learning tasks. Therefore, we leverage two datasets, consisting of facial videos during reading in the lab (N = 135) and lecture viewing in-the-wild (N = 15). When predicting mind wandering, deep neural networks (DNN) and long short-term memory networks (LSTMs) achieve F1 scores of 0.44 (AUC-PR = 0.40) and 0.459 (AUC-PR = 0.39), above chance level, with latent features based on transfer-learning on the lab data. When exploring generalizability by training on the lab dataset and predicting on the in-the-wild dataset, BiLSTMs on latent features perform comparably to the state-of-the-art with an F1 score of 0.352 (AUC-PR = 0.26). Moreover, we investigate the fairness of predictive models across gender and show based on post-hoc explainability methods that employed latent features mainly encode information on eye and mouth areas. We discuss the benefits of generalizability and possible applications.
Attentive or not? Toward a machine learning approach to assessing students' visible engagement in classroom instruction (2021)
Goldberg, Patricia ; Sümer, Ömer ; Stürmer, Kathleen ; Wagner, Wolfgang ; Göllner, Richard ; Gerjets, Peter ; Kasneci, Enkelejda ; Trautwein, Ulrich
Multimodal engagement analysis from facial videos in the classroom (2023)
Sümer, Ömer ; Goldberg, Patricia ; D'Mello, Sidney ; Gerjets, Peter ; Trautwein, Ulrich ; Kasneci, Enkelejda
Teachers' perception in the classroom (2018)
Sümer, Ömer ; Goldberg, Patricia ; Stürmer, Kathleen ; Seidel, Tina ; Gerjets, Peter ; Trautwein, Ulrich ; Kasneci, Enkelejda
Attention flow: end-to-end joint attention estimation (2020)
Sümer, Ömer ; Gerjets, Peter ; Trautwein, Ulrich ; Kasneci, Enkelejda
Automated anonymisation of visual and audio data in classroom studies (2020)
Sümer, Ömer ; Gerjets, Peter ; Trautwein, Ulrich ; Kasneci, Enkelejda
  • 1 to 6

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks