• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help
  • Institutes
  • Mathematisch-Naturwissenschaftlich-Technische Faku...
  • Institut für Physik

Lehrstuhl für Theoretische Physik II

Refine

Has Fulltext

  • yes (409)
  • no (279)

Author

  • Ziegler, Klaus G. (151)
  • Eckern, Ulrich (143)
  • Mikhailov, Sergey A. (106)
  • Sharma, Abhinav (79)
  • Weber, Christoph A. (72)
  • Dzierzawa, Michael (37)
  • Sinner, Andreas (36)
  • Liese, Susanne (33)
  • Schwingenschlögl, Udo (33)
  • Schwab, Peter (27)
+ more

Year of publication

  • 2025 (17)
  • 2024 (21)
  • 2023 (18)
  • 2022 (27)
  • 2021 (30)
  • 2020 (26)
  • 2019 (23)
  • 2018 (30)
  • 2017 (28)
  • 2016 (24)
+ more

Document Type

  • Article (625)
  • Part of a Book (24)
  • Preprint (17)
  • Book (8)
  • Doctoral Thesis (7)
  • Other (3)
  • Conference Proceeding (2)
  • Bachelor Thesis (1)
  • Master's Thesis (1)

Language

  • English (671)
  • German (16)
  • Russian (1)

Keywords

  • General Physics and Astronomy (73)
  • Condensed Matter Physics (70)
  • Electronic, Optical and Magnetic Materials (40)
  • General Materials Science (27)
  • Atomic and Molecular Physics, and Optics (22)
  • General Chemistry (20)
  • Physical and Theoretical Chemistry (12)
  • Statistical and Nonlinear Physics (10)
  • Statistics and Probability (10)
  • Biophysics (9)
+ more

Institute

  • Institut für Physik (688)
  • Lehrstuhl für Theoretische Physik II (688)
  • Mathematisch-Naturwissenschaftlich-Technische Fakultät (688)
  • Lehrstuhl für Theoretische Physik III (22)
  • Lehrstuhl für Experimentalphysik VI (11)
  • Nachhaltigkeitsziele (6)
  • Institut für Materials Resource Management (3)
  • Lehrstuhl für Experimentalphysik IV (3)
  • Professur für Chemie der Materialien und der Ressourcen (2)
  • Ziel 3 - Gesundheit und Wohlergehen (2)
+ more

688 search hits

  • 1 to 20
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Achieving 100% amplitude modulation depth in the terahertz range with graphene-based tuneable capacitance metamaterials (2025)
Xia, Ruqiao ; Almond, Nikita W. ; Tadbier, Wadood ; Kindness, Stephen J. ; Degl'Innocenti, Riccardo ; Lu, Yuezhen ; Lowe, Abbie ; Ramsay, Ben ; Jakob, Lukas A. ; Dann, James ; Hofmann, Stephan ; Beere, Harvey E. ; Mikhailov, Sergey A. ; Ritchie, David A. ; Michailow, Wladislaw
Effective control of terahertz radiation requires fast and efficient modulators with a large modulation depth—a challenge that is often tackled by using metamaterials. Metamaterial-based active modulators can be created by placing graphene as a tuneable element shunting regions of high electric field confinement in metamaterials. However, in this common approach, the graphene is used as a variable resistor, and the modulation is achieved by resistive damping of the resonance. In combination with the finite conductivity of graphene due to its gapless nature, achieving 100% modulation depth using this approach remains challenging. Here, we embed nanoscale graphene capacitors within the gaps of the metamaterial resonators, and thus switch from a resistive damping to a capacitive tuning of the resonance. We further expand the optical modulation range by device excitation from its substrate side. As a result, we demonstrate terahertz modulators with over four orders of magnitude modulation depth (45.7 dB at 1.68 THz and 40.1 dB at 2.15 THz), and a reconfiguration speed of 30 MHz. These tuneable capacitance modulators are electrically controlled solid-state devices enabling unity modulation with graphene conductivities below 0.7 mS. The demonstrated approach can be applied to enhance modulation performance of any metamaterial-based modulator with a 2D electron gas. Our results open up new frontiers in the area of terahertz communications, real-time imaging, and wave-optical analogue computing.
Measurement-induced photonic topological insulators (2025)
Liu, Quancheng ; Liu, Weijie ; Jia, Yuechen ; Ziegler, Klaus ; Alu, Andrea ; Chen, Feng
Topological order in photonics, defined by pseudo-spin degrees of freedom, is traditionally static. By contrast, a unique quantum effect is that measurements alter system states. The convergence of these foundational concepts—measurement and topology—remains unexplored. Here, we demonstrate that topological order can be dynamically modified by repeated measurements. By fabricating a photonic lattice composed of an array of contiguous waveguides and incorporating 16,800 appended waveguide segments as discrete, nonindependent units, we established a classical-wave platform simulating the backaction from measurements and observed measurement-induced topological order in photonic lattices. Beyond topology, we further demonstrate that measurements can universally control the lattice by tailoring its Hilbert space and validate experimentally. Our study not only offers a quantum approach to dynamically tailor topological order but also unveils measurements as a powerful universal control tool, paving the way to on-chip topological materials and measurement-induced control over photonic systems.
Entanglement and teleportation via a chaotic system (2010)
Metwally, N. ; Chotorlishvili, Levan ; Skrinnikov, V.
Magnetic ground state of UCu2X2 (X=Si, Ge) from first principles (2006)
Matar, Samir F. ; Siruguri, Vasudeva ; Eyert, Volker
Chemical pressure and hydrogen insertion effects in CeNiIn (2003)
Matar, S. F. ; Chevalier, B. ; Eyert, Volker ; Etourneau, J.
Rigorous derivation of superposition T-matrix approach from solution of inhomogeneous wave equation (2008)
Litvinov, Pavel ; Ziegler, Klaus G.
Coherent backscattering effects for discrete random media: numerical and theoretical results (2007)
Litvinov, Pavel ; Tishkovets, Victor ; Ziegler, Klaus G.
High-Tc superconductors with antiferromagnetic order: limitations on spin-fluctuation pairing mechanism (2003)
Kulić, Miodrag L. ; Kulić, Igor M.
Light-scattering properties of random-oriented aggregates: do they represent the properties of an ensemble of aggregates? (2006)
Kolokolova, Ludmilla ; Kimura, Hiroshi ; Ziegler, Klaus G. ; Mann, Ingrid
Light scattering on random dielectric layers (2008)
Fialko, Oleksandr ; Ziegler, Klaus
Corundum-based transparent infrared absorbers (2009)
Schwingenschlögl, Udo ; Schuster, Cosima ; Frésard, Raymond
Seat excess variances of apportionment methods for proportional representation (2006)
Schwingenschlögl, Udo ; Drton, Mathias
Probabilities of majority and minority violation in proportional representation (2007)
Schwingenschlögl, Udo
Exponential decay of relaxation effects at LaAlO3/SrTiO3 heterointerfaces (2009)
Schwingenschlögl, Udo ; Schuster, Cosima
Geometry effects at atomic-size aluminium contacts (2007)
Schwingenschlögl, Udo ; Schuster, Cosima
Electronic structure of the c(4×2) reconstructed Ge(001) surface (2007)
Schwingenschlögl, Udo ; Schuster, Cosima
Electronic structure of the Au/benzene-1,4-dithiol/Au transport interface: effects of chemical bonding (2007)
Schwingenschlögl, Udo ; Schuster, Cosima
Chemical bonding and charge distribution at metallic nanocontacts (2006)
Schwingenschlögl, Udo ; Schuster, Cosima
Controlling multiphase coacervate wetting and self-organization by interfacial proteins (2025)
Lu, Tiemei ; Liese, Susanne ; Visser, Brent S. ; van Haren, Merlijn H. I. ; Lipiński, Wojciech P. ; Huck, Wilhelm T. S. ; Weber, Christoph A. ; Spruijt, Evan
Biomolecular condensates help organize biochemical processes in cells and synthetic cell analogues. Many condensates exhibit multiphase architectures, yielding compartments with distinct functions. However, how cells regulate the transformation between different multiphase architectures remains poorly understood. Here, we use multiphase coacervates as model condensates and present a new approach to control wetting and self-organization in multiphase coacervates by introducing a surface-active protein, α-synuclein (αSyn). αSyn can localize at the interface of uridine 5′-triphosphate (UTP)/poly-l-lysine (pLL)/oligo-l-arginine (R10) multiphase coacervates and induce the transformation from nested droplets into partially wetted droplets. The exposed UTP/R10 core coacervate droplets adhered to neighboring (shell) coacervates, forming structures similar to polymers and leading to a dynamic yet stable self-organized network of connected coacervates, which we call coacervate polymers. A theoretical model demonstrates that multiphase coacervates transition to partial wetting upon increasing the interfacial protein, consistent with experimental observations. When three neighboring coacervates are not aligned, surface tension straightens their arrangement, similar to semiflexible polymers. This mechanism likely extends to larger structures, promoting chain formation while preventing fusion. Interestingly, diverse proteins were found to be surface active in multiphase coacervates: BSA, mCherry, and FtsZ all exhibited the same effect on multiphase coacervates’ partial wetting and organization. These findings suggest that interfacial proteins could be used by cells not only to stabilize condensates, but also to control multiphase organization and to regulate the interaction between condensates.
Quantum chaos and its kinetic stage of evolution (2010)
Chotorlishvili, Levan ; Ugulava, A.
  • 1 to 20

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks