Optimality of local multilevel methods on adaptively refined meshes for elliptic boundary value problems

  • A local multilevel product algorithm and its additive version are analyzed for linear systems arising from the application of adaptive finite element methods to second order elliptic boundary value problems. The abstract Schwarz theory is applied to verify uniform convergence of local multilevel methods featuring Jacobi and Gauss-Seidel smoothing only on local nodes. By this abstract theory, convergence estimates can be further derived for the hierarchical basis multigrid method and the hierarchical basis preconditioning method on locally refined meshes, where local smoothing is performed only on new nodes. Numerical experiments confirm the optimality of the suggested algorithms.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Xuejun Xu, Huangxin Chen, Ronald H. W. HoppeORCiDGND
URN:urn:nbn:de:bvb:384-opus4-10742
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1274
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2009-15)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Contributing Corporation:University of Houston, Chinese Academy of Sciences Beijing
Release Date:2009/06/08
Tag:local multilevel methods; adaptive finite element methods; local smoothing; Schwarz theory; optimality
GND-Keyword:Elliptisches Randwertproblem; Finite-Elemente-Methode; Optimierung
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht mit Print on Demand