Concurrency and local reasoning under reverse exchange

  • Quite a number of aspects of concurrency are reflected by the inequational exchange law (P⁎Q);(R⁎S) ≤ (P;R)⁎(Q;S) between sequential composition ; and concurrent composition ⁎. In particular, recent research has shown that, under a certain semantic definition, validity of this law is equivalent to that of the familiar concurrency rule for Hoare triples. Unfortunately, while the law holds in the standard model of concurrent Kleene algebra, its is not true in the relationally based setting of algebraic separation logic. However, we show that under mild conditions the reverse inequation (P;R)⁎(Q;S) ≤ (P⁎Q);(R⁎S) still holds there. From this reverse exchange law we derive slightly restricted but still reasonably useful variants of the concurrency rule. Moreover, using a corresponding definition of locality, we obtain also a variant of the frame rule, where ⁎ now is interpreted as separating conjunction. These results allow using the relational setting also for modular and concurrencyQuite a number of aspects of concurrency are reflected by the inequational exchange law (P⁎Q);(R⁎S) ≤ (P;R)⁎(Q;S) between sequential composition ; and concurrent composition ⁎. In particular, recent research has shown that, under a certain semantic definition, validity of this law is equivalent to that of the familiar concurrency rule for Hoare triples. Unfortunately, while the law holds in the standard model of concurrent Kleene algebra, its is not true in the relationally based setting of algebraic separation logic. However, we show that under mild conditions the reverse inequation (P;R)⁎(Q;S) ≤ (P⁎Q);(R⁎S) still holds there. From this reverse exchange law we derive slightly restricted but still reasonably useful variants of the concurrency rule. Moreover, using a corresponding definition of locality, we obtain also a variant of the frame rule, where ⁎ now is interpreted as separating conjunction. These results allow using the relational setting also for modular and concurrency reasoning. Finally, we interpret the results further by discussing several variations of the approach.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Statistik

Anzahl der Zugriffe auf dieses Dokument

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Han Hing Dang, Bernhard MöllerGND
URN:urn:nbn:de:bvb:384-opus4-587556
Frontdoor-URLhttps://opus.bibliothek.uni-augsburg.de/opus4/58755
ISSN:0167-6423OPAC
Titel des übergeordneten Werkes (Englisch):Science of Computer Programming
Verlag:Elsevier BV
Typ:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2014
Veröffentlichende Institution:Universität Augsburg
Datum der Freischaltung in OPUS:23.07.2019
Jahrgang:85
Erste Seite:204
Letzte Seite:223
DOI:https://doi.org/10.1016/j.scico.2013.07.006
Einrichtungen der Universität:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Lizenz (Deutsch):License LogoCC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)