Numerical investigation of agent controlled pedestrian dynamics using a structure preserving finite volume scheme

  • We provide a numerical realisation of an optimal control problem for pedestrian motion with agents that was analysed in Herzog, Pietschmann, Winkler: "Optimal Control of Hughes' Model for Pedestrian Flow via Local Attraction.", arXiv 2011.03580, 2020. The model consists of a regularized variant of Hughes' model for pedestrian dynamics coupled to ordinary differential equations that describe the motion of agents which are able to influence the crowd via attractive forces. We devise a finite volume scheme that preserves the box constraints that are inherent in the model and discuss some of its properties. We apply our scheme to an objective functional tailored to the case of an evacuation scenario. Finally, numerical simulations for several practically relevant geometries are performed.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jan-Frederik PietschmannORCiDGND, Ailyn Stötzner, Max Winkler
URN:urn:nbn:de:bvb:384-opus4-1021111
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/102111
ISSN:1019-7168OPAC
ISSN:1572-9044OPAC
Parent Title (English):Advances in Computational Mathematics
Publisher:Springer Nature
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2023/02/20
Volume:50
First Page:4
DOI:https://doi.org/10.1007/s10444-023-10098-0
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Inverse Probleme
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)