Numerical investigation of agent controlled pedestrian dynamics using a structure preserving finite volume scheme
- We provide a numerical realisation of an optimal control problem for pedestrian motion with agents that was analysed in Herzog, Pietschmann, Winkler: "Optimal Control of Hughes' Model for Pedestrian Flow via Local Attraction.", arXiv 2011.03580, 2020. The model consists of a regularized variant of Hughes' model for pedestrian dynamics coupled to ordinary differential equations that describe the motion of agents which are able to influence the crowd via attractive forces. We devise a finite volume scheme that preserves the box constraints that are inherent in the model and discuss some of its properties. We apply our scheme to an objective functional tailored to the case of an evacuation scenario. Finally, numerical simulations for several practically relevant geometries are performed.
Author: | Jan-Frederik PietschmannORCiDGND, Ailyn Stötzner, Max Winkler |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1021111 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/102111 |
ISSN: | 1019-7168OPAC |
ISSN: | 1572-9044OPAC |
Parent Title (English): | Advances in Computational Mathematics |
Publisher: | Springer Nature |
Type: | Article |
Language: | English |
Year of first Publication: | 2024 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2023/02/20 |
Volume: | 50 |
First Page: | 4 |
DOI: | https://doi.org/10.1007/s10444-023-10098-0 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Inverse Probleme | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |