Dynamic optimal transport on networks
- We study a dynamic optimal transport problem on a network. Despite the cost for transport along the edges, an additional cost, scaled with a parameter κ, has to be paid for interchanging mass between edges and vertices. We show existence of minimisers using duality and discuss the relationship of the model to other metrics such as Fisher–Rao and the classical Wasserstein metric. Finally, we examine the limiting behaviour of the model in terms of the parameter κ.
Author: | Martin Burger, Ina Humpert, Jan-Frederik PietschmannORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1021267 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/102126 |
Parent Title (English): | ESAIM: COCV |
Publisher: | EDP Sciences |
Type: | Article |
Language: | English |
Year of first Publication: | 2023 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2023/02/20 |
Volume: | 29 |
First Page: | 54 |
DOI: | https://doi.org/10.1051/cocv/2023027 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Inverse Probleme | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |