Dynamic optimal transport on networks

  • We study a dynamic optimal transport problem on a network. Despite the cost for transport along the edges, an additional cost, scaled with a parameter κ, has to be paid for interchanging mass between edges and vertices. We show existence of minimisers using duality and discuss the relationship of the model to other metrics such as Fisher–Rao and the classical Wasserstein metric. Finally, we examine the limiting behaviour of the model in terms of the parameter κ.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin Burger, Ina Humpert, Jan-Frederik PietschmannORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1021267
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/102126
Parent Title (English):ESAIM: COCV
Publisher:EDP Sciences
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/02/20
Volume:29
First Page:54
DOI:https://doi.org/10.1051/cocv/2023027
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Inverse Probleme
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)