Optimal control of Hughes' model for pedestrian flow via local attraction
- We discuss the control of a human crowd whose dynamics is governed by a regularized version of Hughes' model, cf. Hughes: A continuum theory for the flow of pedestrians. Transportation research part B: methodological, 36 (2002). We assume that a finite number of agents act on the crowd and try to optimize their paths in a given time interval. The objective functional can be general and it can correspond, for instance, to the desire for fast evacuation or to maintain a single group of individuals. We provide an existence result for the forward model, study differentiability properties of the control-to-state map, establish the existence of a globally optimal control and formulate optimality conditions.
Author: | Roland Herzog, Jan-Frederik PietschmannORCiDGND, Max Winkler |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1021283 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/102128 |
Parent Title (English): | Applied Mathematics & Optimization |
Publisher: | Springer Science and Business Media LLC |
Type: | Article |
Language: | English |
Date of first Publication: | 2023/10/17 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2023/02/20 |
Volume: | 88 |
Issue: | 3 |
First Page: | 87 |
DOI: | https://doi.org/10.1007/s00245-023-10064-8 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Inverse Probleme | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |