Analysis of 2D airglow imager data with respect to dynamics using machine learning

  • We demonstrate how machine learning can be easily applied to support the analysis of large quantities of excited hydroxyl (OH*) airglow imager data. We use a TCN (temporal convolutional network) classification algorithm to automatically pre-sort images into the three categories “dynamic” (images where small-scale motions like turbulence are likely to be found), “calm” (clear-sky images with weak airglow variations) and “cloudy” (cloudy images where no airglow analyses can be performed). The proposed approach is demonstrated using image data of FAIM 3 (Fast Airglow IMager), acquired at Oberpfaffenhofen, Germany, between 11 June 2019 and 25 February 2020, achieving a mean average precision of 0.82 in image classification. The attached video sequence demonstrates the classification abilities of the learned TCN. Within the dynamic category, we find a subset of 13 episodes of image series showing turbulence. As FAIM 3 exhibits a high spatial (23 m per pixel) and temporal (2.8 s perWe demonstrate how machine learning can be easily applied to support the analysis of large quantities of excited hydroxyl (OH*) airglow imager data. We use a TCN (temporal convolutional network) classification algorithm to automatically pre-sort images into the three categories “dynamic” (images where small-scale motions like turbulence are likely to be found), “calm” (clear-sky images with weak airglow variations) and “cloudy” (cloudy images where no airglow analyses can be performed). The proposed approach is demonstrated using image data of FAIM 3 (Fast Airglow IMager), acquired at Oberpfaffenhofen, Germany, between 11 June 2019 and 25 February 2020, achieving a mean average precision of 0.82 in image classification. The attached video sequence demonstrates the classification abilities of the learned TCN. Within the dynamic category, we find a subset of 13 episodes of image series showing turbulence. As FAIM 3 exhibits a high spatial (23 m per pixel) and temporal (2.8 s per image) resolution, turbulence parameters can be derived to estimate the energy diffusion rate. Similarly to the results the authors found for another FAIM station (Sedlak et al., 2021), the values of the energy dissipation rate range from 0.03 to 3.18 W kg−1.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:René SedlakORCiDGND, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer LienhartGND, Michael BittnerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1063224
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/106322
ISSN:1867-8548OPAC
Parent Title (English):Atmospheric Measurement Techniques
Publisher:Copernicus
Place of publication:Göttingen
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/07/25
Tag:Atmospheric Science
Volume:16
Issue:12
First Page:3141
Last Page:3153
DOI:https://doi.org/10.5194/amt-16-3141-2023
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Professur für Atmosphärenfernerkundung
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Maschinelles Lernen und Maschinelles Sehen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)