Transactional memory for high-performance embedded systems

  • The increasing demand for computational power in embedded systems, which is required for various tasks, such as autonomous driving, can only be achieved by exploiting the resources offered by modern hardware. Due to physical limitations, hardware manufacturers have moved to increase the number of cores per processor instead of further increasing clock rates. Therefore, in our view, the additionally required computing power can only be achieved by exploiting parallelism. Unfortunately writing parallel code is considered a difficult and complex task. Hardware Transactional Memories (HTMs) are a suitable tool to write sophisticated parallel software. However, HTMs were not specifically developed for embedded systems and therefore cannot be used without consideration. The use of conventional HTMs increases complexity and makes it more difficult to foresee implications with other important properties of embedded systems. This thesis therefore describes how an HTM for embedded systemsThe increasing demand for computational power in embedded systems, which is required for various tasks, such as autonomous driving, can only be achieved by exploiting the resources offered by modern hardware. Due to physical limitations, hardware manufacturers have moved to increase the number of cores per processor instead of further increasing clock rates. Therefore, in our view, the additionally required computing power can only be achieved by exploiting parallelism. Unfortunately writing parallel code is considered a difficult and complex task. Hardware Transactional Memories (HTMs) are a suitable tool to write sophisticated parallel software. However, HTMs were not specifically developed for embedded systems and therefore cannot be used without consideration. The use of conventional HTMs increases complexity and makes it more difficult to foresee implications with other important properties of embedded systems. This thesis therefore describes how an HTM for embedded systems could be implemented. The HTM was designed to allow the parallel execution of software and to offer functionality which is useful for embedded systems. Hereby the focus lay on: elimination of the typical limitations of conventional HTMs, several conflict resolution mechanisms, investigation of real time behavior, and a feature to conserve energy. To enable the desired functionalities, the structure of the HTM described in this work strongly differs from a conventional HTM. In comparison to the baseline HTM, which was also designed and implemented in this thesis, the biggest adaptation concerns the conflict detection. It was modified so that conflicts can be detected and resolved centrally. For this, the cache hierarchy as well as the cache coherence had to be adapted and partially extended. The system was implemented in the cycle-accurate gem5 simulator. The eight benchmarks of the STAMP benchmark suite were used for evaluation. The evaluation of the various functionalities shows that the mechanisms work and add value for the operation in embedded systems.show moreshow less
  • Der immer größer werdende Bedarf an Rechenleistung in eingebetteten Systemen, der für verschiedene Aufgaben wie z. B. dem autonomen Fahren benötigt wird, kann nur durch die effiziente Nutzung der zur Verfügung stehenden Ressourcen erreicht werden. Durch physikalische Grenzen sind Prozessorhersteller dazu übergegangen, Prozessoren mit mehreren Prozessorkernen auszustatten, statt die Taktraten weiter anzuheben. Daher kann die zusätzlich benötigte Rechenleistung aus unserer Sicht nur durch eine Steigerung der Parallelität gelingen. Hardwaretransaktionsspeicher (HTS) erlauben es ihren Nutzern schnell und einfach parallele Programme zu schreiben. Allerdings wurden HTS nicht speziell für eingebettete Systeme entwickelt und sind daher nur eingeschränkt für diese nutzbar. Durch den Einsatz herkömmlicher HTS steigt die Komplexität und es wird somit schwieriger abzusehen, ob andere wichtige Eigenschaften erreicht werden können. Um den Einsatz von HTS in eingebettete Systeme besser zuDer immer größer werdende Bedarf an Rechenleistung in eingebetteten Systemen, der für verschiedene Aufgaben wie z. B. dem autonomen Fahren benötigt wird, kann nur durch die effiziente Nutzung der zur Verfügung stehenden Ressourcen erreicht werden. Durch physikalische Grenzen sind Prozessorhersteller dazu übergegangen, Prozessoren mit mehreren Prozessorkernen auszustatten, statt die Taktraten weiter anzuheben. Daher kann die zusätzlich benötigte Rechenleistung aus unserer Sicht nur durch eine Steigerung der Parallelität gelingen. Hardwaretransaktionsspeicher (HTS) erlauben es ihren Nutzern schnell und einfach parallele Programme zu schreiben. Allerdings wurden HTS nicht speziell für eingebettete Systeme entwickelt und sind daher nur eingeschränkt für diese nutzbar. Durch den Einsatz herkömmlicher HTS steigt die Komplexität und es wird somit schwieriger abzusehen, ob andere wichtige Eigenschaften erreicht werden können. Um den Einsatz von HTS in eingebettete Systeme besser zu ermöglichen, beschreibt diese Arbeit einen konkreten Ansatz. Der HTS wurde hierzu so entwickelt, dass er eine parallele Ausführung von Programmen ermöglicht und Eigenschaften besitzt, welche für eingebettete Systeme nützlich sind. Dazu gehören unter anderem: Wegfall der typischen Limitierungen herkömmlicher HTS, Einflussnahme auf den Konfliktauflösungsmechanismus, Unterstützung einer abschätzbaren Ausführung und eine Funktion, um Energie einzusparen. Um die gewünschten Funktionalitäten zu ermöglichen, unterscheidet sich der Aufbau des in dieser Arbeit beschriebenen HTS stark von einem klassischen HTS. Im Vergleich zu dem Referenz HTS, der ebenfalls im Rahmen dieser Arbeit entworfen und implementiert wurde, betrifft die größte Anpassung die Konflikterkennung. Sie wurde derart verändert, dass die Konflikte zentral erkannt und aufgelöst werden können. Hierfür mussten die Cache-Hierarchie und Cache-Kohärenz stark angepasst und teilweise erweitert werden. Das System wurde in einem taktgenauen Simulator, dem gem5-Simulator, umgesetzt. Zur Evaluation wurden die acht Benchmarks der STAMP-Benchmark-Suite eingesetzt. Die Evaluation der verschiedenen Funktionen zeigt, dass die Mechanismen funktionieren und somit einen Mehrwert für eingebettete Systeme bieten.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christian PiatkaGND
URN:urn:nbn:de:bvb:384-opus4-1064679
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/106467
Advisor:Sebastian Altmeyer
Type:Doctoral Thesis
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Granting Institution:Universität Augsburg, Fakultät für Angewandte Informatik
Date of final exam:2023/03/20
Release Date:2023/08/07
Tag:Hardware Transactional Memory; Contention Management; Unbounded Transactions; Embedded Systems
GND-Keyword:Eingebettetes System; Transaktionaler Speicher
Pagenumber:155
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Systems
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht mit Print on Demand