Riemannian Newton methods for energy minimization problems of Kohn-Sham type

  • This paper is devoted to the numerical solution of constrained energy minimization problems arising in computational physics and chemistry such as the Gross–Pitaevskii and Kohn–Sham models. In particular, we introduce Riemannian Newton methods on the infinite-dimensional Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite dimensional setting, which are suitable for variational spatial discretizations. A series of numerical experiments illustrates the performance of the methods and demonstrates their supremacy compared to other well-established schemes such as the self-consistent field iteration and gradient descent schemes.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Robert AltmannORCiDGND, Daniel PeterseimORCiDGND, Tatjana StykelORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1073044
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/107304
ISSN:0885-7474OPAC
Parent Title (English):Journal of Scientific Computing
Publisher:Springer
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2023/08/31
Volume:101
First Page:6
DOI:https://doi.org/10.1007/s10915-024-02612-3
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)