On learning hierarchical embeddings from encrypted network traffic

Download full text files

  • 107327.pdfeng
    (338KB)

    Postprint. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nikolas Wehner, Markus Ring, Joshua Schuler, Andreas Hotho, Tobias Hoßfeld, Michael SeufertORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1073273
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/107327
ISBN:978-1-6654-0602-4OPAC
Parent Title (English):NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, 5-29 April 2022, Budapest, Hungary
Publisher:IEEE
Place of publication:New York, NY
Editor:Pal Varga, Lisandro Zambenedetti Granville, Alex Galis, Istvan Godor, Noura Limam, Prosper Chemouil, Jérôme François, Marc-Oliver Pahl
Type:Conference Proceeding
Language:English
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2023/09/13
First Page:1
Last Page:7
DOI:https://doi.org/10.1109/noms54207.2022.9789896
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für vernetzte eingebettete Systeme und Kommunikationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht