Stream-based machine learning for real-time QoE analysis of encrypted video streaming traffic

Download full text files

  • 107367.pdfeng
    (218KB)

    Postprint. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael SeufertORCiDGND, Pedro Casas, Nikolas Wehner, Li Gang, Kuang Li
URN:urn:nbn:de:bvb:384-opus4-1073679
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/107367
ISBN:978-1-5386-8336-1OPAC
ISSN:2472-8144OPAC
Parent Title (English):22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), 19-21 February 2019, Paris, France
Publisher:IEEE
Place of publication:Piscataway, NJ
Editor:Filip Idzikowski, Muge Sayit
Type:Conference Proceeding
Language:English
Year of first Publication:2019
Publishing Institution:Universität Augsburg
Release Date:2023/10/11
First Page:76
Last Page:81
DOI:https://doi.org/10.1109/icin.2019.8685901
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für vernetzte eingebettete Systeme und Kommunikationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht