LIFEDATA - a framework for traceable active learning projects

  • Active Learning has become a popular method for iteratively improving data-intensive Artificial Intelligence models. However, it often presents a significant challenge when dealing with large volumes of volatile data in projects, as with an Active Learning loop. This paper introduces LIFEDATA, a Python- based framework designed to assist developers in implementing Active Learning projects focusing on traceability. It supports seamless tracking of all artifacts, from data selection and labeling to model interpretation, thus promoting transparency throughout the entire model learning process and enhancing error debugging efficiency while ensuring experiment reproducibility. To showcase its applicability, we present two life science use cases. Moreover, the paper proposes an algorithm that combines query strategies to demonstrate LIFEDATA’s ability to reduce data labeling effort.

Download full text files

  • 108197.pdfeng
    (438KB)

    Postprint. © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Fabian StielerORCiDGND, Miriam EliaORCiDGND, Benjamin Weigell, Bernhard BauerORCiDGND, Peter Kienle, Anton Roth, Gregor Müllegger, Marius NannGND, Sarah Dopfer
URN:urn:nbn:de:bvb:384-opus4-1081971
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/108197
ISBN:9798350326918OPAC
Parent Title (English):2023 IEEE 31st International Requirements Engineering Conference Workshops (REW), 4-5 September 2023, Hannover, Germany
Publisher:IEEE
Place of publication:Piscataway, NJ
Editor:Kurt Schneider, Fabiano Dalpiaz, Jennifer Horkoff
Type:Conference Proceeding
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/10/04
GND-Keyword:Active Learning; Data Labeling; Traceability; Data-Centric AI; Python Framework
First Page:465
Last Page:474
DOI:https://doi.org/10.1109/REW57809.2023.00088
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik / Professur Softwaremethodik für verteilte Systeme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht