Rabi regime of current rectification in solids

  • We investigate rectified currents in response to oscillating electric fields in systems lacking inversion and time-reversal symmetries. These currents, in second-order perturbation theory, are inversely proportional to the relaxation rate, and, therefore, naively diverge in the ideal clean limit. Employing a combination of the nonequilibrium Green function technique and Floquet theory, we show that this is an artifact of perturbation theory, and that there is a well-defined periodic steady state akin to Rabi oscillations leading to finite rectified currents in the limit of weak coupling to a thermal bath. In this Rabi regime the rectified current scales as the square root of the radiation intensity, in contrast with the linear scaling of the perturbative regime, allowing us to readily diagnose it in experiments. More generally, our description provides a smooth interpolation from the ideal periodic Gibbs ensemble describing the Rabi oscillations of a closed system to the perturbativeWe investigate rectified currents in response to oscillating electric fields in systems lacking inversion and time-reversal symmetries. These currents, in second-order perturbation theory, are inversely proportional to the relaxation rate, and, therefore, naively diverge in the ideal clean limit. Employing a combination of the nonequilibrium Green function technique and Floquet theory, we show that this is an artifact of perturbation theory, and that there is a well-defined periodic steady state akin to Rabi oscillations leading to finite rectified currents in the limit of weak coupling to a thermal bath. In this Rabi regime the rectified current scales as the square root of the radiation intensity, in contrast with the linear scaling of the perturbative regime, allowing us to readily diagnose it in experiments. More generally, our description provides a smooth interpolation from the ideal periodic Gibbs ensemble describing the Rabi oscillations of a closed system to the perturbative regime of rapid relaxation due to strong coupling to a thermal bath.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Oles Matsyshyn, Francesco PiazzaORCiDGND, Roderich Moessner, Inti Sodemann
URN:urn:nbn:de:bvb:384-opus4-1084066
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/108406
ISSN:0031-9007OPAC
ISSN:1079-7114OPAC
Parent Title (English):Physical Review Letters
Publisher:American Physical Society (APS)
Type:Article
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2023/10/16
Tag:General Physics and Astronomy
Volume:127
Issue:12
First Page:126604
DOI:https://doi.org/10.1103/physrevlett.127.126604
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik III
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)