Combining molecular dynamics simulations and x-ray scattering techniques for the accurate treatment of protonation degree and packing of ionizable lipids in monolayers

  • The pH-dependent change in protonation of ionizable lipids is crucial for the success of lipid-based nanoparticles as mRNA delivery systems. Despite their widespread application in vaccines, the structural changes upon acidification are not well understood. Molecular dynamics simulations support structure prediction but require an a priori knowledge of the lipid packing and protonation degree. The presetting of the protonation degree is a challenging task in the case of ionizable lipids since it depends on pH and on the local lipid environment and often lacks experimental validation. Here, we introduce a methodology of combining all-atom molecular dynamics simulations with experimental total-reflection x-ray fluorescence and scattering measurements for the ionizable lipid Dlin-MC3-DMA (MC3) in POPC monolayers. This joint approach allows us to simultaneously determine the lipid packing and the protonation degree of MC3. The consistent parameterization is expected to be useful forThe pH-dependent change in protonation of ionizable lipids is crucial for the success of lipid-based nanoparticles as mRNA delivery systems. Despite their widespread application in vaccines, the structural changes upon acidification are not well understood. Molecular dynamics simulations support structure prediction but require an a priori knowledge of the lipid packing and protonation degree. The presetting of the protonation degree is a challenging task in the case of ionizable lipids since it depends on pH and on the local lipid environment and often lacks experimental validation. Here, we introduce a methodology of combining all-atom molecular dynamics simulations with experimental total-reflection x-ray fluorescence and scattering measurements for the ionizable lipid Dlin-MC3-DMA (MC3) in POPC monolayers. This joint approach allows us to simultaneously determine the lipid packing and the protonation degree of MC3. The consistent parameterization is expected to be useful for further predictive modeling of the action of MC3-based lipid nanoparticles.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Miriam Grava, Mohd Ibrahim, Akhil Sudarsan, Julio Pusterla, Julian Philipp, Joachim O. Rädler, Nadine SchwierzORCiDGND, Emanuel Schneck
URN:urn:nbn:de:bvb:384-opus4-1087433
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/108743
ISSN:0021-9606OPAC
ISSN:1089-7690OPAC
Parent Title (English):The Journal of Chemical Physics
Publisher:AIP Publishing
Place of publication:Melville, NY
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/10/25
Tag:Physical and Theoretical Chemistry; General Physics and Astronomy
Volume:159
Issue:15
First Page:154706
DOI:https://doi.org/10.1063/5.0172552
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / AG Computergestützte Biologie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)