Intrinsic dimension of path integrals: data-mining quantum criticality and emergent simplicity

  • Quantum many-body systems are characterized by patterns of correlations defining highly nontrivial manifolds when interpreted as data structures. Physical properties of phases and phase transitions are typically retrieved via correlation functions, that are related to observable response functions. Recent experiments have demonstrated capabilities to fully characterize quantum many-body systems via wave-function snapshots, opening new possibilities to analyze quantum phenomena. Here, we introduce a method to data mine the correlation structure of quantum partition functions via their path integral (or equivalently, stochastic series expansion) manifold. We characterize path-integral manifolds generated via state-of-the-art quantum Monte Carlo methods utilizing the intrinsic dimension (ID) and the variance of distances between nearest-neighbor (NN) configurations: the former is related to data-set complexity, while the latter is able to diagnose connectivity features of points inQuantum many-body systems are characterized by patterns of correlations defining highly nontrivial manifolds when interpreted as data structures. Physical properties of phases and phase transitions are typically retrieved via correlation functions, that are related to observable response functions. Recent experiments have demonstrated capabilities to fully characterize quantum many-body systems via wave-function snapshots, opening new possibilities to analyze quantum phenomena. Here, we introduce a method to data mine the correlation structure of quantum partition functions via their path integral (or equivalently, stochastic series expansion) manifold. We characterize path-integral manifolds generated via state-of-the-art quantum Monte Carlo methods utilizing the intrinsic dimension (ID) and the variance of distances between nearest-neighbor (NN) configurations: the former is related to data-set complexity, while the latter is able to diagnose connectivity features of points in configuration space. We show how these properties feature universal patterns in the vicinity of quantum criticality, that reveal how data structures simplify systematically at quantum phase transitions. This is further reflected by the fact that both ID and variance of NN distances exhibit universal scaling behavior in the vicinity of second-order and Berezinskii-Kosterlitz-Thouless critical points. Finally, we show how non-Abelian symmetries dramatically influence quantum data sets, due to the nature of (noncommuting) conserved charges in the quantum case. Complementary to neural-network representations, our approach represents a first elementary step towards a systematic characterization of path-integral manifolds before any dimensional reduction is taken, that is informative about universal behavior and complexity, and can find immediate application to both experiments and Monte Carlo simulations.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tiago Mendes-SantosORCiDGND, A. Angelone, Alex Rodriguez, R. Fazio, M. Dalmonte
URN:urn:nbn:de:bvb:384-opus4-1095121
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/109512
ISSN:2691-3399OPAC
Parent Title (English):PRX Quantum
Publisher:American Physical Society (APS)
Type:Article
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2023/11/27
Tag:General Earth and Planetary Sciences; General Environmental Science
Volume:2
Issue:3
First Page:030332
DOI:https://doi.org/10.1103/prxquantum.2.030332
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik III
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)