A clinically applicable connectivity signature for glioblastoma includes the tumor network driver CHI3L1

  • Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principleTumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients’ prognosis, and serves as a robust prognostic biomarker.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ling Hai, Dirk C. Hoffmann, Robin J. Wagener, Daniel D. Azorin, David Hausmann, Ruifan Xie, Magnus-Carsten Huppertz, Julien Hiblot, Philipp Sievers, Sophie Heuer, Jakob Ito, Gina Cebulla, Alexandros Kourtesakis, Leon D. Kaulen, Miriam Ratliff, Henriette Mandelbaum, Erik Jung, Ammar Jabali, Sandra Horschitz, Kati J. Ernst, Denise Reibold, Uwe Warnken, Varun Venkataramani, Rainer Will, Mario L. Suvà, Christel Herold-Mende, Felix Sahm, Frank Winkler, Matthias SchlesnerORCiDGND, Wolfgang Wick, Tobias Kessler
URN:urn:nbn:de:bvb:384-opus4-1115714
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/111571
ISSN:2041-1723OPAC
Parent Title (English):Nature Communications
Publisher:Springer Science and Business Media LLC
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/02/26
Tag:General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry; Multidisciplinary
Volume:15
Issue:1
First Page:968
DOI:https://doi.org/10.1038/s41467-024-45067-8
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Biomedizinische Informatik, Data Mining und Data Analytics
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)