Stage-specific detection and characterisation of the malaria parasite

  • Atomic force microscopy (AFM) and fluorescence microscopy allow to reveal diagnostic patterns characteristic to the intra-erythrocytic stages of malaria parasites based on the morphological and fluorescence properties of infected red blood cells (RBCs). These observations provide the basis for a novel neural network (NN)-based scheme that is capable of the high-speed classification of RBCs into the intra-erythrocytic stages with an accuracy as high as 98%. Thus, the approach developed in this work contributes to meeting the rising need for reliable and fast malaria diagnosis and is able to boost NN-based classification of malaria stages in microscopic images. In fact, the universality and the robustness of the NN-based method against imaging platform-specific features naturally grants its applicability for the wide range of light microscopes used worldwide for malaria diagnosis that is a prerequisite for successful in-field applications.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Katharina Preißinger
URN:urn:nbn:de:bvb:384-opus4-1123198
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/112319
Advisor:István Kézsmárki
Type:Doctoral Thesis
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Granting Institution:Universität Augsburg, Mathematisch-Naturwissenschaftlich-Technische Fakultät
Date of final exam:2024/03/13
Release Date:2024/07/03
GND-Keyword:Malaria; Diagnose; Rasterkraftmikroskopie; Fluoreszenzmikroskopie; Neuronales Netz; Bildverarbeitung
Pagenumber:161
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik V
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Licence (German):Deutsches Urheberrecht mit Print on Demand