A privacy-preserving multi-task learning framework for emotion and identity recognition from multimodal physiological signals

Download full text files

  • 112619.pdfeng
    (1427KB)

    Postprint. © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Mohamed BenouisORCiDGND, Yekta Said CanORCiDGND, Elisabeth AndréORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1126198
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/112619
ISBN:979-8-3503-2746-5OPAC
Parent Title (English):2023 11th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), 10-13 September 2023, Cambridge, MA, USA
Publisher:IEEE
Place of publication:Piscataway, NJ
Type:Conference Proceeding
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2024/04/23
First Page:1
Last Page:8
DOI:https://doi.org/10.1109/aciiw59127.2023.10388160
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Maschinelles Lernen und Maschinelles Sehen
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht