Analyzing credit spread changes using explainable artificial intelligence

  • We compare linear regression, local polynomial regression and selected machine learning methods for modeling credit spread changes. Using partial dependence plots (PDPs) and H-statistic, we find that the outperformance of machine learning models compared to regression ones is mostly attributable to complex non-linearities and not to interactions. The PDPs are additionally used to perform a factor hedging. For the first time, credit spread changes are decomposed by applying SHapley Additive exPlanation (SHAP) values. The proposed framework is applied to US and Euro Area corporate and covered bond credit spread changes of different maturities to quantify the influence of several macroeconomic and financial variables. Despite several commonalities between the decompositions of US and Euro Area credit spread changes, we also observe some differences — particularly related to the impact of certain explanatory variables during crisis periods.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Julia HegerORCiD, Aleksey Min, Rudi Zagst
URN:urn:nbn:de:bvb:384-opus4-1126657
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/112665
ISSN:1057-5219OPAC
Parent Title (English):International Review of Financial Analysis
Publisher:Elsevier BV
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/04/23
Tag:Economics and Econometrics; Finance
Volume:94
First Page:103315
DOI:https://doi.org/10.1016/j.irfa.2024.103315
Institutes:Wirtschaftswissenschaftliche Fakultät
Wirtschaftswissenschaftliche Fakultät / Institut für Statistik und mathematische Wirtschaftstheorie
Wirtschaftswissenschaftliche Fakultät / Institut für Statistik und mathematische Wirtschaftstheorie / Lehrstuhl für Analytics & Optimization
Dewey Decimal Classification:3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)