Automating airborne pollen classification: identifying and interpreting hard samples for classifiers

  • Deep-learning-based classification of pollen grains has been a major driver towards automatic monitoring of airborne pollen. Yet, despite an abundance of available datasets, little effort has been spent to investigate which aspects pose the biggest challenges to the (often black-box- resembling) pollen classification approaches. To shed some light on this issue, we conducted a sample-level difficulty analysis based on the likelihood for one of the largest automatically-generated datasets of pollen grains on microscopy images and investigated the reason for which certain airborne samples and specific pollen taxa pose particular problems to deep learning algorithms. It is here concluded that the main challenges lie in A) the (partly) co-occurring of multiple pollen grains in a single image, B) the occlusion of specific markers through the 2D capturing of microscopy images, and C) for some taxa, a general lack of salient, unique features. Our code is publicly available underDeep-learning-based classification of pollen grains has been a major driver towards automatic monitoring of airborne pollen. Yet, despite an abundance of available datasets, little effort has been spent to investigate which aspects pose the biggest challenges to the (often black-box- resembling) pollen classification approaches. To shed some light on this issue, we conducted a sample-level difficulty analysis based on the likelihood for one of the largest automatically-generated datasets of pollen grains on microscopy images and investigated the reason for which certain airborne samples and specific pollen taxa pose particular problems to deep learning algorithms. It is here concluded that the main challenges lie in A) the (partly) co-occurring of multiple pollen grains in a single image, B) the occlusion of specific markers through the 2D capturing of microscopy images, and C) for some taxa, a general lack of salient, unique features. Our code is publicly available under https://github.com/millinma/SDPollenshow moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Manuel MillingORCiDGND, Simon D. N. Rampp, Andreas TriantafyllopoulosORCiD, Maria P. PlazaORCiD, Jens O. BrunnerORCiDGND, Claudia Traidl-HoffmannORCiDGND, Björn W. SchullerORCiDGND, Athanasios DamialisORCiD
URN:urn:nbn:de:bvb:384-opus4-1180576
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/118057
ISSN:2405-8440OPAC
Parent Title (English):Heliyon
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/01/16
Volume:11
Issue:2
First Page:e41656
DOI:https://doi.org/10.1016/j.heliyon.2025.e41656
Institutes:Wirtschaftswissenschaftliche Fakultät
Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Wirtschaftswissenschaftliche Fakultät / Institut für Betriebswirtschaftslehre
Medizinische Fakultät
Wirtschaftswissenschaftliche Fakultät / Institut für Betriebswirtschaftslehre / Lehrstuhl für Health Care Operations / Health Information Management
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Umweltmedizin
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)