The ForDigitStress dataset: a multi-modal dataset for automatic stress recognition

  • We present a multi-modal stress dataset that uses digital job interviews to induce stress. The dataset provides multi-modal data of 40 participants including audio, video (motion capturing, facial landmarks, eye tracking) as well as physiological information (photoplethysmography, electrodermal activity). In addition to that, the dataset contains time-continuous annotations for stress and occurred emotions (e.g., shame, anger, anxiety, and surprise). In order to establish a baseline, five different machine learning classifiers (Support Vector Machine, K-Nearest Neighbors, Random Forest, Feed-forward Neural Network, and Long-Short-Term Memory Network) have been trained and evaluated on the presented dataset for a binary stress classification task. The best-performing classifier has been a Long-Short-Term Memory Network, which achieved an accuracy of 91.7% and an F1-score of 90.2%. The ForDigitStress dataset is freely available to other researchers.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexander HeimerlORCiDGND, Pooja PrajodGND, Silvan MertesORCiDGND, Tobias BaurORCiDGND, Matthias Kraus, Ailin Liu, Helen Risack, Nicolas Rohleder, Elisabeth AndréORCiDGND, Linda Becker
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/119234
ISSN:1949-3045OPAC
ISSN:2371-9850OPAC
Parent Title (English):IEEE Transactions on Affective Computing
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Place of publication:New York, NY
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/02/20
DOI:https://doi.org/10.1109/taffc.2024.3501400
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)