Metric entropy of nonautonomous dynamical systems

  • Abstract We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn; μn) of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the classical notion of metric entropy. In particular, invariance with respect to appropriately defined isomorphisms, a power rule, and a Rokhlin-type inequality are proved

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christoph KawanGND
URN:urn:nbn:de:bvb:384-opus4-1196047
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/119604
ISSN:2353-0626OPAC
Parent Title (English):Nonautonomous Dynamical Systems
Publisher:De Gruyter Open
Type:Article
Language:English
Date of first Publication:2013/07/10
Publishing Institution:Universität Augsburg
Release Date:2025/02/28
Tag:Nonautonomous dynamical systems; metric entropy; topological entropy; variational principle
Volume:1
Issue:1
First Page:26
Last Page:52
DOI:https://doi.org/10.2478/msds-2013-0003
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY-NC-ND 3.0: Creative Commons - Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)