Dynamical low-rank tensor approximations to high-dimensional parabolic problems: existence and convergence of spatial discretizations

  • We consider dynamical low-rank approximations to parabolic problems on higher-order tensor manifolds in Hilbert spaces. In addition to existence of solutions and their stability with respect to perturbations to the problem data, we show convergence of spatial discretizations. Our framework accommodates various standard low-rank tensor formats for multivariate functions, including tensor train and hierarchical tensors.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Markus Bachmayr, Henrik Eisenmann, André UschmajewGND
URN:urn:nbn:de:bvb:384-opus4-1218617
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/121861
ISSN:0029-599XOPAC
ISSN:0945-3245OPAC
Parent Title (German):Numerische Mathematik
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/05/09
Volume:157
First Page:781
Last Page:822
DOI:https://doi.org/10.1007/s00211-025-01465-8
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Mathematical Data Science
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)