Multidimensional clustering approaches for pareto-frontiers

  • In Data Mining large and increasing sets of data are becoming more and more common. In order to avoid losing the overview on these data-sets, preference queries are a very popular method to reduce quantities of data to high relevant information. Together with clustering methods like k-means, confusing sets of objects can be constituted and presented clearer in order to get a better overview. In this report we present on the one hand the Pareto-dominance as a very suitable and promising approach to cluster objects over better-than relationships. In order to meet someones desires, one can tip the balance of the final results to the more favored dimension if no decision for allocating objects is possible. On the other hand we introduce based on the Pareto-dominance an advanced clustering approach exploiting the Borda Social Choice voting rule to manage distances of different domains by equally weights during the clustering process.

Download full text files

Export metadata


Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Author:Johannes KastnerGND, Markus EndresGND
Frontdoor URL
Series (Serial Number):Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2017-02)
Publishing Institution:Universität Augsburg
Release Date:2017/06/07
Tag:Skyline; Pareto-Frontier; Clustering; k-Means; Borda Social Choice
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Datenbanken und Informationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht mit Print on Demand