Parallel multi-level preference computation
- Given a data set, a top-k Skyline query returns the k most interesting elements of the Skyline query based on some kind of user-defined preference. That means, sometimes not only the Pareto frontier is of interest, but also the stratum, the level, behind the Skyline to get exactly the top-k objects from a partially ordered set stratified into subsets of non-dominated tuples. In this paper, we extend the definition of top-k Skyline to form multi-level Skyline sets. Multi-level Skylines are a variant of top-k Skylines which do not stop after k tuples, but compute all Skyline levels. We present a parallel algorithm for multi-level Skyline computation on multi-core architectures and demonstrate through extensive experimentation on synthetic and real data sets that our algorithms can result in a significant performance advantage over existing techniques.
Author: | Markus EndresGND, Stefan Wohlfart |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-43235 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/4323 |
Series (Serial Number): | Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2017-03) |
Type: | Report |
Language: | English |
Publishing Institution: | Universität Augsburg |
Release Date: | 2017/07/04 |
Tag: | Parallel computation; Multi-level preference; Top-k; Skyline; Multi-core |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Datenbanken und Informationssysteme | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Licence (German): | Deutsches Urheberrecht mit Print on Demand |