Markovianity and ergodicity for a surface growth PDE

  • The paper analyses a model in surface growth, where uniqueness of weak solutions seems to be out of reach. We provide the existence of a weak martingale solution satisfying energy inequalities and having the Markov property. Furthermore, under non-degeneracy conditions on the noise, we establish that any such solution is strong Feller and has a unique invariant measure.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dirk BlömkerORCiDGND, Franco Flandoli, Marco RomitoORCiD
URN:urn:nbn:de:bvb:384-opus4-4514
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/558
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2007-30)
Type:Preprint
Language:English
Year of first Publication:2007
Publishing Institution:Universität Augsburg
Release Date:2007/07/13
Tag:Surface growth model; weak energy solutions; Markov solutions; strong Feller property; ergodicity
GND-Keyword:Partielle Differentialgleichung; Markov-Prozess; Feller-Prozess; Schwache Lösung; Wachstumsmodell; Ergodentheorie
Note:
Erschienen in The Annals of Probability, 37, 1, S. 275-313, https://doi.org/10.1214/08-aop403
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik