A Comparative Study of Sequential Feature Selection Methods for Support Vector Machine
- In this paper we investigate existing feature selection algorithms combined with support vector machine (SBS). Two ranking-based algorithms, recursive feature elimination (RFE) and incremental regularized risk minimization (IRRM), and greedy sequential backward search (SBS) are tested by using biosignal dataset which contains 35 features per sample and a total of 25 samples labeled by four emotion classes. The performance of the selection algorithms are compared by considering recognition rates obtained by the leave-one-out validation.
Author: | Jonghwa KimORCiD |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-4873 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/611 |
Series (Serial Number): | Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2007-10) |
Type: | Report |
Language: | English |
Date of Publication (online): | 2008/01/16 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2008/01/16 |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |