Swarm and collective capabilities for multipotent robot ensembles
- Swarm behavior can be very beneficial for real-world robot applications. While analyzing the current state of research, we identified that many studied swarm algorithms foremost aim at modifying the movement vector of the executing robot. In this paper, we demonstrate how we encapsulate this behavior in a general pattern that robots can execute with adjusted parameters for realizing different beneficial swarm algorithms. We integrate the pattern as a virtual swarm capability in our reference architecture for multipotent, reconfigurable multi-robot ensembles and demonstrate its application in proof of concepts. We further illustrate how we can lift the concept of virtual capabilities to also integrate other known approaches for collective system programming as virtual collective capabilities. As an example, we do so by integrating the execution platform for the Protelis aggregate programming language.